These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36188180)

  • 1. Using linear parameter varying autoregressive models to measure cross frequency couplings in EEG signals.
    Kostoglou K; Müller-Putz GR
    Front Hum Neurosci; 2022; 16():915815. PubMed ID: 36188180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mutual information measure of phase-amplitude coupling using gamma generalized linear models.
    Perley AS; Coleman TP
    Front Comput Neurosci; 2024; 18():1392655. PubMed ID: 38841426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple cross-frequency coupling analysis of resting-state EEG in patients with mild cognitive impairment and Alzheimer's disease.
    Chen X; Li Y; Li R; Yuan X; Liu M; Zhang W; Li Y
    Front Aging Neurosci; 2023; 15():1142085. PubMed ID: 37600515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous 2D trajectory decoding from attempted movement: across-session performance in able-bodied and feasibility in a spinal cord injured participant.
    Pulferer HS; Ásgeirsdóttir B; Mondini V; Sburlea AI; Müller-Putz GR
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35443233
    [No Abstract]   [Full Text] [Related]  

  • 6. The Advantage of Low-Delta Electroencephalogram Phase Feature for Reconstructing the Center-Out Reaching Hand Movements.
    Zeng H; Sun Y; Xu G; Wu C; Song A; Xu B; Li H; Hu C
    Front Neurosci; 2019; 13():480. PubMed ID: 31156367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal-spatial convolutional residual network for decoding attempted movement related EEG signals of subjects with spinal cord injury.
    Mirzabagherian H; Menhaj MB; Suratgar AA; Talebi N; Abbasi Sardari MR; Sajedin A
    Comput Biol Med; 2023 Sep; 164():107159. PubMed ID: 37531857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Decoding of Hand Movement From EEG Signals Using Phase-Based Connectivity Features.
    Hosseini SM; Shalchyan V
    Front Hum Neurosci; 2022; 16():901285. PubMed ID: 35845243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG decoding method based on multi-feature information fusion for spinal cord injury.
    Xu F; Li J; Dong G; Li J; Chen X; Zhu J; Hu J; Zhang Y; Yue S; Wen D; Leng J
    Neural Netw; 2022 Dec; 156():135-151. PubMed ID: 36257070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings.
    Siebenhühner F; Wang SH; Arnulfo G; Lampinen A; Nobili L; Palva JM; Palva S
    PLoS Biol; 2020 May; 18(5):e3000685. PubMed ID: 32374723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations.
    Abubaker M; Al Qasem W; Kvašňák E
    Front Psychol; 2021; 12():756661. PubMed ID: 34744934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of cross-frequency coupling with confidence using generalized linear models.
    Kramer MA; Eden UT
    J Neurosci Methods; 2013 Oct; 220(1):64-74. PubMed ID: 24012829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha and high gamma phase amplitude coupling during motor imagery and weighted cross-frequency coupling to extract discriminative cross-frequency patterns.
    Gwon D; Ahn M
    Neuroimage; 2021 Oct; 240():118403. PubMed ID: 34280525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system.
    Robinson N; Guan C; Vinod AP
    J Neural Eng; 2015 Dec; 12(6):066019. PubMed ID: 26501230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-frequency coupling in real and virtual brain networks.
    Jirsa V; Müller V
    Front Comput Neurosci; 2013; 7():78. PubMed ID: 23840188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral Spreading Depression Transient Disruption of Cross-Frequency Coupling in the Rat Brain: Preliminary Observations.
    Zhang T; Nemoto EM
    Adv Exp Med Biol; 2021; 1269():209-216. PubMed ID: 33966219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality.
    Lozano-Soldevilla D; Ter Huurne N; Oostenveld R
    Front Comput Neurosci; 2016; 10():87. PubMed ID: 27597822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex interplay between spectral harmonicity and different types of cross-frequency couplings in nonlinear oscillators and biologically plausible neural network models.
    Dellavale D; Velarde OM; Mato G; Urdapilleta E
    Phys Rev E; 2020 Dec; 102(6-1):062401. PubMed ID: 33466042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automatic sleep disorder detection based on EEG cross-frequency coupling and random forest model.
    Dimitriadis SI; Salis CI; Liparas D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33848982
    [No Abstract]   [Full Text] [Related]  

  • 20. Feel Your Reach: An EEG-Based Framework to Continuously Detect Goal-Directed Movements and Error Processing to Gate Kinesthetic Feedback Informed Artificial Arm Control.
    Müller-Putz GR; Kobler RJ; Pereira J; Lopes-Dias C; Hehenberger L; Mondini V; Martínez-Cagigal V; Srisrisawang N; Pulferer H; Batistić L; Sburlea AI
    Front Hum Neurosci; 2022; 16():841312. PubMed ID: 35360289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.