These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 3618821)

  • 61. ATP-dependent silver transport across the basolateral membrane of rainbow trout gills.
    Bury NR; Grosell M; Grover AK; Wood CM
    Toxicol Appl Pharmacol; 1999 Aug; 159(1):1-8. PubMed ID: 10448119
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cultured trout gill epithelia enriched in pavement cells or in mitochondria-rich cells provides insights into Na+ and Ca 2+ transport.
    Galvez F; Tsui T; Wood CM
    In Vitro Cell Dev Biol Anim; 2008; 44(10):415-25. PubMed ID: 18810565
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of amiloride and SITS on branchial ion fluxes in rainbow trout, Salmo gairdneri.
    Perry SF; Randall DJ
    J Exp Zool; 1981 Feb; 215(2):225-8. PubMed ID: 7276890
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reciprocal enhancement of uptake and toxicity of cadmium and calcium in rainbow trout (Oncorhynchus mykiss) liver mitochondria.
    Adiele RC; Stevens D; Kamunde C
    Aquat Toxicol; 2010 Mar; 96(4):319-27. PubMed ID: 20036780
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biochemical effects of long-term exposure to cadmium and copper on rainbow trout (Salmo gairdneri): validation of water quality criteria.
    Arillo A; Calamari D; Margiocco C; Melodia F; Mensi P
    Ecotoxicol Environ Saf; 1984 Apr; 8(2):106-17. PubMed ID: 6425036
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts.
    Liew HJ; Sinha AK; Nawata CM; Blust R; Wood CM; De Boeck G
    Aquat Toxicol; 2013 Jan; 126():63-76. PubMed ID: 23143040
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Physiological action of dissolved organic matter in rainbow trout in the presence and absence of copper: sodium uptake kinetics and unidirectional flux rates in hard and softwater.
    Matsuo AY; Playle RC; Val AL; Wood CM
    Aquat Toxicol; 2004 Oct; 70(1):63-81. PubMed ID: 15451608
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cadmium influx and efflux across perfused gills of the shore crab, Carcinus maenas.
    Pedersen TV; Bjerregaard P
    Aquat Toxicol; 2000 Mar; 48(2-3):223-231. PubMed ID: 10686328
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The effects of bovine prolactin, sea water and environmental calcium on water influx in isolated gills of the euryhaline teleosts, Anguilla japonica and Salmo gairdnerii.
    Ogawa M
    Comp Biochem Physiol A Comp Physiol; 1974 Nov; 49(3A):545-53. PubMed ID: 4153722
    [No Abstract]   [Full Text] [Related]  

  • 70. Effects of water chemistry variables on gill binding and acute toxicity of cadmium in rainbow trout (Oncorhynchus mykiss): A biotic ligand model (BLM) approach.
    Niyogi S; Kent R; Wood CM
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):305-14. PubMed ID: 18577468
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The absorption of hydrophobic chemicals across perfused rainbow trout gills: methodological aspects.
    Pärt P; Saarikoski J; Tuurala H; Havaste K
    Ecotoxicol Environ Saf; 1992 Dec; 24(3):275-86. PubMed ID: 1282872
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Uptake of cadmium through isolated perfused gills of the Chinese mitten crab, Eriocheir sinensis.
    Silvestre F; Trausch G; Péqueux A; Devos P
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jan; 137(1):189-96. PubMed ID: 14720604
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Aspects of purine metabolism in the gill epithelium of rainbow trout, Salmo gairdneri Richardson.
    Leray C; Raffin JP; Winninger C
    Comp Biochem Physiol B; 1979; 62(1):31-40. PubMed ID: 318437
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The gill calcium transport cycle in rainbow trout is correlated with plasma levels of bioactive, not immunoreactive, stanniocalcin.
    Wagner GF; Fargher RC; Milliken C; McKeown BA; Copp DH
    Mol Cell Endocrinol; 1993 Jun; 93(2):185-91. PubMed ID: 8349027
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of thyroid hormones on in vivo 1-14C L-leucine incorporation into plasma and tissue protein of brook trout (Salvelinus fontinalis) and rainbow trout (Salmo gairdneri).
    Narayansingh T; Eales JG
    Comp Biochem Physiol B; 1975 Nov; 52(3):99-405. PubMed ID: 1183197
    [No Abstract]   [Full Text] [Related]  

  • 76. Reciprocal inhibition of Cd and Ca uptake in isolated head kidney cells of rainbow trout (Oncorhynchus mykiss).
    Gagnon E; Hontela A; Jumarie C
    Toxicol In Vitro; 2007 Sep; 21(6):1077-86. PubMed ID: 17540537
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ca2+ uptake and Cd2+ accumulation in larval tilapia (Oreochromis mossambicus) acclimated to waterborne Cd2+.
    Chang MH; Lin HC; Hwang PP
    Am J Physiol; 1998 Jun; 274(6):R1570-7. PubMed ID: 9608010
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cd(2+)-induced injury in CNS white matter.
    Fern R; Black JA; Ransom BR; Waxman SG
    J Neurophysiol; 1996 Nov; 76(5):3264-73. PubMed ID: 8930271
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ca2+ versus Zn2+ transport in the gills of freshwater rainbow trout and the cost of adaptation to waterborne Zn2+.
    Hogstrand C; Reid S; Wood C
    J Exp Biol; 1995; 198(Pt 2):337-48. PubMed ID: 9317921
    [TBL] [Abstract][Full Text] [Related]  

  • 80. On the mechanisms of sodium ion transport by the irrigated gills of rainbow trout (Salmo gairdneri).
    Kerstetter TH; Kirschner LB; Rafuse DD
    J Gen Physiol; 1970 Sep; 56(3):342-59. PubMed ID: 5529209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.