These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36188238)

  • 1. Ni-Containing Electrolytes for Superior Zinc-Ion Aqueous Batteries with Zinc Hexacyanoferrate Cathodes.
    Rehman R; Zhang X; Chang M; Qin D; Liu Y; Wei P; Huang C; Wang B; Xiong F; Xu Y; Hu P; Han J; Chu PK
    ACS Omega; 2022 Sep; 7(38):33942-33948. PubMed ID: 36188238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing Zinc Hexacyanoferrate Cathode by Low Contents of Cs Cations for Aqueous Zn-Ion Batteries.
    Pan Z; Ni G; Li Y; Shi Y; Zhu F; Cui P; Zhou C
    ChemSusChem; 2024 May; ():e202400713. PubMed ID: 38785104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Voltage and Super-Stable Aqueous Sodium-Zinc Hybrid Ion Batteries Enabled by Double Solvation Structures in Concentrated Electrolyte.
    Ao H; Zhu W; Liu M; Zhang W; Hou Z; Wu X; Zhu Y; Qian Y
    Small Methods; 2021 Jul; 5(7):e2100418. PubMed ID: 34928003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cubic Manganese Potassium Hexacyanoferrate Regulated by Controlling of the Water and Defects as a High-Capacity and Stable Cathode Material for Rechargeable Aqueous Zinc-Ion Batteries.
    Cao T; Zhang F; Chen M; Shao T; Li Z; Xu Q; Cheng D; Liu H; Xia Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26924-26935. PubMed ID: 34060801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries.
    Dong H; Li J; Zhao S; Jiao Y; Chen J; Tan Y; Brett DJL; He G; Parkin IP
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):745-754. PubMed ID: 33370108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoration of nickel hexacyanoferrate nanocubes onto reduced graphene oxide sheets as high-performance cathode material for rechargeable aqueous zinc-ion batteries.
    Xue Y; Chen Y; Shen X; Zhong A; Ji Z; Cheng J; Kong L; Yuan A
    J Colloid Interface Sci; 2022 Mar; 609():297-306. PubMed ID: 34896830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology-Dependent Electrochemical Performance of Zinc Hexacyanoferrate Cathode for Zinc-Ion Battery.
    Zhang L; Chen L; Zhou X; Liu Z
    Sci Rep; 2015 Dec; 5():18263. PubMed ID: 26669272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Mechanism of the Improved Operation Voltage of Rhombohedral Nickel Hexacyanoferrate as Cathodes for Sodium-Ion Batteries.
    Ji Z; Han B; Liang H; Zhou C; Gao Q; Xia K; Wu J
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33619-33625. PubMed ID: 27960427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new zinc-ion battery cathode with high-performance: Loofah-like lanthanum manganese perovskite.
    Zhu T; Zheng K; Wang P; Cai X; Wang X; Gao D; Yu D; Chen C; Liu Y
    J Colloid Interface Sci; 2022 Mar; 610():796-804. PubMed ID: 34862045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Layered (Na,Mn)V
    Du M; Liu C; Zhang F; Dong W; Zhang X; Sang Y; Wang JJ; Guo YG; Liu H; Wang S
    Adv Sci (Weinh); 2020 Jul; 7(13):2000083. PubMed ID: 32670757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries.
    Dong W; Du M; Zhang F; Zhang X; Miao Z; Li H; Sang Y; Wang JJ; Liu H; Wang S
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5034-5043. PubMed ID: 33464805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vanadium Hexacyanoferrate as a High-Capacity and High-Voltage Cathode for Aqueous Rechargeable Zinc Ion Batteries.
    Zhang S; Pang Q; Ai Y; He W; Fu Y; Xing M; Tian Y; Luo X
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Concentration Redox-Electrolytes for High-Rate and Long-Life Zinc Metal Batteries.
    Wang S; Zhao Y; Lv H; Hu X; He J; Zhi C; Li H
    Small; 2023 Apr; ():e2207664. PubMed ID: 37026660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries.
    Zhai XZ; Qu J; Hao SM; Jing YQ; Chang W; Wang J; Li W; Abdelkrim Y; Yuan H; Yu ZZ
    Nanomicro Lett; 2020 Feb; 12(1):56. PubMed ID: 34138296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rechargeable Aqueous Zinc-Ion Batteries in MgSO
    Zhang Y; Li H; Huang S; Fan S; Sun L; Tian B; Chen F; Wang Y; Shi Y; Yang HY
    Nanomicro Lett; 2020 Feb; 12(1):60. PubMed ID: 34138271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Efficiency and Stable Zn-Na
    Guo G; Tan X; Wang K; Zhang H
    ChemSusChem; 2022 Jun; 15(11):e202200313. PubMed ID: 35344279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-processed perylene diimide-ethylene diamine cathodes for aqueous zinc ion batteries.
    Jiang B; Huang T; Yang P; Xi X; Su Y; Liu R; Wu D
    J Colloid Interface Sci; 2021 Sep; 598():36-44. PubMed ID: 33892442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust VS
    Chen K; Li X; Zang J; Zhang Z; Wang Y; Lou Q; Bai Y; Fu J; Zhuang C; Zhang Y; Zhang L; Dai S; Shan C
    Nanoscale; 2021 Jul; 13(28):12370-12378. PubMed ID: 34254619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and electrochemical performance of VO
    Li R; Yu X; Bian X; Hu F
    RSC Adv; 2019 Oct; 9(60):35117-35123. PubMed ID: 35530719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Electrochemical Performance of the Orthorhombic V
    Tan X; Guo G; Wang K; Zhang H
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.