These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 36189653)
21. Scalable transient gene expression in Chinese hamster ovary cells in instrumented and non-instrumented cultivation systems. Muller N; Derouazi M; Van Tilborgh F; Wulhfard S; Hacker DL; Jordan M; Wurm FM Biotechnol Lett; 2007 May; 29(5):703-11. PubMed ID: 17310326 [TBL] [Abstract][Full Text] [Related]
22. Efficient production of recombinant proteins in suspension CHO cells culture using the Tol2 transposon system coupled with cycloheximide resistance selection. Yamaguchi K; Ogawa R; Tsukahara M; Kawakami K Sci Rep; 2023 May; 13(1):7628. PubMed ID: 37165015 [TBL] [Abstract][Full Text] [Related]
23. Design of Experiment in CHO and HEK transient transfection condition optimization. Bollin F; Dechavanne V; Chevalet L Protein Expr Purif; 2011 Jul; 78(1):61-8. PubMed ID: 21354312 [TBL] [Abstract][Full Text] [Related]
24. [Serum-free medium for suspension culture of recombinant Chinese hamster ovary (11G-S) cells]. Liu X; Liu H; Ye L; Li S; Wu B; Wang H; Xie J; Chen Z Sheng Wu Gong Cheng Xue Bao; 2010 Aug; 26(8):1116-22. PubMed ID: 21090117 [TBL] [Abstract][Full Text] [Related]
25. A convenient and general expression platform for the production of secreted proteins from human cells. Aydin H; Azimi FC; Cook JD; Lee JE J Vis Exp; 2012 Jul; (65):. PubMed ID: 22872008 [TBL] [Abstract][Full Text] [Related]
26. Bench-Scale Stirred-Tank Bioreactor for Recombinant Protein Production in Chinese Hamster Ovary (CHO) Cells in Suspension. Monteil DT; Kuan J Methods Mol Biol; 2018; 1850():133-145. PubMed ID: 30242685 [TBL] [Abstract][Full Text] [Related]
27. Serum-free large-scale transient transfection of CHO cells. Derouazi M; Girard P; Van Tilborgh F; Iglesias K; Muller N; Bertschinger M; Wurm FM Biotechnol Bioeng; 2004 Aug; 87(4):537-45. PubMed ID: 15286991 [TBL] [Abstract][Full Text] [Related]
28. A CHO stable pool production platform for rapid clinical development of trimeric SARS-CoV-2 spike subunit vaccine antigens. Joubert S; Stuible M; Lord-Dufour S; Lamoureux L; Vaillancourt F; Perret S; Ouimet M; Pelletier A; Bisson L; Mahimkar R; Pham PL; L Ecuyer-Coelho H; Roy M; Voyer R; Baardsnes J; Sauvageau J; St-Michael F; Robotham A; Kelly J; Acel A; Schrag JD; El Bakkouri M; Durocher Y Biotechnol Bioeng; 2023 Jul; 120(7):1746-1761. PubMed ID: 36987713 [TBL] [Abstract][Full Text] [Related]
29. Sialic Acid and Fucose Residues on the SARS-CoV-2 Receptor-Binding Domain Modulate IgG Antibody Reactivity. Samuelsson E; Mirgorodskaya E; Nyström K; Bäckström M; Liljeqvist JÅ; Nordén R ACS Infect Dis; 2022 Sep; 8(9):1883-1893. PubMed ID: 35980012 [TBL] [Abstract][Full Text] [Related]
30. The kinetics of polyethylenimine-mediated transfection in suspension cultures of Chinese hamster ovary cells. Bertschinger M; Schertenleib A; Cevey J; Hacker DL; Wurm FM Mol Biotechnol; 2008 Oct; 40(2):136-43. PubMed ID: 18543131 [TBL] [Abstract][Full Text] [Related]
31. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567 [TBL] [Abstract][Full Text] [Related]
32. SARS-CoV-2 spike protein variant binding affinity to an angiotensin-converting enzyme 2 fusion glycoproteins. Matthews AM; Biel TG; Ortega-Rodriguez U; Falkowski VM; Bush X; Faison T; Xie H; Agarabi C; Rao VA; Ju T PLoS One; 2022; 17(12):e0278294. PubMed ID: 36472974 [TBL] [Abstract][Full Text] [Related]
33. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch. Poulain A; Perret S; Malenfant F; Mullick A; Massie B; Durocher Y J Biotechnol; 2017 Aug; 255():16-27. PubMed ID: 28625678 [TBL] [Abstract][Full Text] [Related]
34. Robust and low-cost ELISA based on IgG-Fc tagged recombinant proteins to screen for anti-SARS-CoV-2 antibodies. Frumence E; Lebeau G; Viranaicken W; Dobi A; Vagner D; Lalarizo Rakoto M; Sandenon Seteyen AL; Giry C; Septembre-Malaterre A; Raffray L; Gasque P J Immunol Methods; 2021 Aug; 495():113082. PubMed ID: 34051226 [TBL] [Abstract][Full Text] [Related]
35. Adaptation of CHO cells in serum-free conditions for erythropoietin production: Application of EVOP technique for process optimization. Jukić S; Bubenik D; Pavlović N; Tušek AJ; Srček VG Biotechnol Appl Biochem; 2016 Sep; 63(5):633-641. PubMed ID: 26661088 [TBL] [Abstract][Full Text] [Related]
36. Transient transfection of CHO-K1-S using serum-free medium in suspension: a rapid mammalian protein expression system. Rosser MP; Xia W; Hartsell S; McCaman M; Zhu Y; Wang S; Harvey S; Bringmann P; Cobb RR Protein Expr Purif; 2005 Apr; 40(2):237-43. PubMed ID: 15766864 [TBL] [Abstract][Full Text] [Related]
37. PEI-Mediated Transient Gene Expression in CHO Cells. Rajendra Y Methods Mol Biol; 2018; 1850():33-42. PubMed ID: 30242678 [TBL] [Abstract][Full Text] [Related]
38. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Rajendra Y; Hougland MD; Alam R; Morehead TA; Barnard GC Biotechnol Bioeng; 2015 May; 112(5):977-86. PubMed ID: 25502369 [TBL] [Abstract][Full Text] [Related]
39. CHO transfectants produce large amounts of recombinant protein in suspension culture. Schütt C; Fürll B; Stelter F; Jack RS; Witt S J Immunol Methods; 1997 May; 204(1):99-102. PubMed ID: 9202714 [TBL] [Abstract][Full Text] [Related]
40. Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor. Lipscomb ML; Mowry MC; Kompala DS Biotechnol Prog; 2004; 20(5):1402-7. PubMed ID: 15458323 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]