These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36189722)

  • 1. BCC-Cu nanoparticles: from a transient to a stable allotrope by tuning size and reaction conditions.
    Alfke JL; Müller A; Clark AH; Cervellino A; Plodinec M; Comas-Vives A; Copéret C; Safonova OV
    Phys Chem Chem Phys; 2022 Oct; 24(39):24429-24438. PubMed ID: 36189722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic reduction of NO on copper/MCM-41 studied by in situ EXAFS and XANES.
    Huang YJ; Wang HP; Lee JF
    Chemosphere; 2003 Mar; 50(8):1035-41. PubMed ID: 12531709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of the fcc-to-bcc phase transition in single-crystalline PdCu alloy nanoparticles.
    Jiang Y; Duchamp M; Ang SJ; Yan H; Tan TL; Mirsaidov U
    Nat Commun; 2023 Jan; 14(1):104. PubMed ID: 36609570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations into sulfobetaine-stabilized Cu nanoparticle formation: toward development of a microfluidic synthesis.
    Song Y; Doomes EE; Prindle J; Tittsworth R; Hormes J; Kumar CS
    J Phys Chem B; 2005 May; 109(19):9330-8. PubMed ID: 16852117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The remarkable activity and stability of a highly dispersive beta-brass Cu-Zn catalyst for the production of ethylene glycol.
    Li MM; Zheng J; Qu J; Liao F; Raine E; Kuo WC; Su SS; Po P; Yuan Y; Tsang SC
    Sci Rep; 2016 Feb; 6():20527. PubMed ID: 26856760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of a bcc-like framework in polyhydrido copper nanoclusters.
    Guo QL; Han BL; Sun CF; Wang Z; Tao Y; Lin JQ; Luo GG; Tung CH; Sun D
    Nanoscale; 2021 Dec; 13(46):19642-19649. PubMed ID: 34816855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phase transition in annealed mechanically alloyed Fe - Cu.
    Yu-Zhi L; Tie L; Yu-Heng Z; Li-Wen W; Chen G; Wen-Han L
    J Phys Condens Matter; 1996 Sep; 8(38):7191-7. PubMed ID: 22146414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper Nanoparticles Supported on ZIF-8: Comparison of Cu(II) Reduction Processes and Application as Benzyl Alcohol Oxidation Catalysts.
    Zan Y; Ben Romdhane F; Miche A; Méthivier C; Krafft JM; Jolivalt C; Reboul J
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38716-38728. PubMed ID: 37523484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ EXAFS analysis of the temperature-programmed reduction of Cu-ZSM-5.
    Neylon MK; Marshall CL; Kropf AJ
    J Am Chem Soc; 2002 May; 124(19):5457-65. PubMed ID: 11996587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segregation and H2 transport rate control in body-centered cubic PdCu membranes.
    Yuan L; Goldbach A; Xu H
    J Phys Chem B; 2007 Sep; 111(37):10952-8. PubMed ID: 17715958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity.
    Cheng G; Hight Walker AR
    Anal Bioanal Chem; 2010 Feb; 396(3):1057-69. PubMed ID: 19841909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure of metastable bcc Cu-Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations.
    Liebscher CH; Freysoldt C; Dennenwaldt T; Harzer TP; Dehm G
    Ultramicroscopy; 2017 Jul; 178():96-104. PubMed ID: 27595171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot synthesis of silica-coated copper nanoparticles with high chemical and thermal stability.
    Shiomi S; Kawamori M; Yagi S; Matsubara E
    J Colloid Interface Sci; 2015 Dec; 460():47-54. PubMed ID: 26313712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and particle size of di(ethylene glycol) mediated metallic copper nanoparticles.
    Anzlovar A; Orel ZC; Zigon M
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3516-25. PubMed ID: 19051905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu segregation in Au-Cu nanoparticles exposed to hydrogen atmospheric pressure: how is fcc symmetry maintained?
    Wang Q; Nassereddine A; Loffreda D; Ricolleau C; Alloyeau D; Louis C; Delannoy L; Nelayah J; Guesmi H
    Faraday Discuss; 2023 Jan; 242(0):375-388. PubMed ID: 36178299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.
    Yang J; Liu J; Dynes JJ; Peak D; Regier T; Wang J; Zhu S; Shi J; Tse JS
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2943-54. PubMed ID: 24170498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu and Zr surface sites in the photocatalytic activity of TiO
    Pliekhova O; Arčon I; Pliekhov O; Tušar NN; Štangar UL
    Environ Sci Pollut Res Int; 2017 May; 24(14):12571-12581. PubMed ID: 27658399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The EXP pair-potential system. III. Thermodynamic phase diagram.
    Pedersen UR; Bacher AK; Schrøder TB; Dyre JC
    J Chem Phys; 2019 May; 150(17):174501. PubMed ID: 31067860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption.
    Maimaiti Y; Nolan M; Elliott SD
    Phys Chem Chem Phys; 2014 Feb; 16(7):3036-46. PubMed ID: 24394338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual mechanisms in hydrogen reduction of copper oxide: surface reaction and subsurface oxygen atom transfer.
    Wu Y; Fang R; Shen L; Bai H
    RSC Adv; 2024 Mar; 14(14):9985-9995. PubMed ID: 38533105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.