These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36189900)

  • 1. Over 200 °C Broad-Temperature Lasers Reconstructed from a Blue-Phase Polymer Scaffold.
    Chen Y; Zheng C; Yang W; Li J; Jin F; Li X; Wang J; Jiang L
    Adv Mater; 2022 Nov; 34(47):e2206580. PubMed ID: 36189900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-, Dual-, Triple, and Quadruple-Wavelength Surface-Emitting Lasing in Blue-Phase Liquid Crystal.
    Liu J; Chen Y; Jin F; Wang J; Ikeda T; Jiang L
    Adv Mater; 2022 Mar; 34(9):e2108330. PubMed ID: 34918395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Templated Sphere Phase Liquid Crystals for Tunable Random Lasing.
    Chen Z; Hu D; Chen X; Zeng D; Lee Y; Chen X; Lu J
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29140283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase.
    Lin JD; Wang TY; Mo TS; Huang SY; Lee CR
    Sci Rep; 2016 Jul; 6():30407. PubMed ID: 27456475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random lasing in blue phase liquid crystals.
    Chen CW; Jau HC; Wang CT; Lee CH; Khoo IC; Lin TH
    Opt Express; 2012 Oct; 20(21):23978-84. PubMed ID: 23188364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Amorphous Crosslinker on Phase Behavior and Electro-Optic Response of Polymer-Stabilized Blue Phase Liquid Crystals.
    Lee KM; Tohgha U; Bunning TJ; McConney ME; Godman NP
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell.
    Lin JD; Huang SY; Wang HS; Lin SH; Mo TS; Horng CT; Yeh HC; Chen LJ; Lin HL; Lee CR
    Opt Express; 2014 Dec; 22(24):29479-92. PubMed ID: 25606882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I).
    Fu Y; Zhu H; Stoumpos CC; Ding Q; Wang J; Kanatzidis MG; Zhu X; Jin S
    ACS Nano; 2016 Aug; 10(8):7963-72. PubMed ID: 27437566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetric Continuously Tunable Photonic Band Gaps in Blue-Phase Liquid Crystals Switched by an Alternating Current Field.
    Du XW; Hou DS; Li X; Sun DP; Lan JF; Zhu JL; Ye WJ
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):22015-22020. PubMed ID: 31132240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure-Stabilized Blue Phase Liquid Crystals.
    Lin JD; Daniel Ho YL; Chen L; Lopez-Garcia M; Jiang SA; Taverne MPC; Lee CR; Rarity JG
    ACS Omega; 2018 Nov; 3(11):15435-15441. PubMed ID: 30533577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array.
    Jeong MY; Chung KS; Wu JW
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8288-95. PubMed ID: 25958516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-Tunable and Highly Stable Perovskite-Quantum-Dot-Doped Lasers with Liquid Crystal Lasing Cavities.
    Chen LJ; Dai JH; Lin JD; Mo TS; Lin HP; Yeh HC; Chuang YC; Jiang SA; Lee CR
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33307-33315. PubMed ID: 30198255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-tunable lasing from dye-doped chiral microdroplets encapsulated in a thin polymeric film.
    Petriashvili G; Bruno MDL; De Santo MP; Barberi R
    Beilstein J Nanotechnol; 2018; 9():379-383. PubMed ID: 29515951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible and tensile microporous polymer fibers for wavelength-tunable random lasing.
    Ta VD; Saxena D; Caixeiro S; Sapienza R
    Nanoscale; 2020 Jun; 12(23):12357-12363. PubMed ID: 32490495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel nanoparticle-stabilized room-temperature blue-phase liquid crystals.
    Liu F; Ma G; Zhao D
    Nanotechnology; 2018 Jul; 29(28):285703. PubMed ID: 29595520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.
    Cao W; Muñoz A; Palffy-Muhoray P; Taheri B
    Nat Mater; 2002 Oct; 1(2):111-3. PubMed ID: 12618825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-threshold, single-mode, and linearly polarized lasing from all organic quasicrystal microcavity.
    Liu Z; Chen R; Liu Y; Zhang X; Sun X; Huang W; Luo D
    Opt Express; 2017 Sep; 25(18):21519-21525. PubMed ID: 29041449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell gap.
    Muñoz A; McConney ME; Kosa T; Luchette P; Sukhomlinova L; White TJ; Bunning TJ; Taheri B
    Opt Lett; 2012 Jul; 37(14):2904-6. PubMed ID: 22825173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.
    Jo SY; Jeon SW; Kim BC; Bae JH; Araoka F; Choi SW
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8941-8947. PubMed ID: 28215076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-voltage and fast-response polymer-stabilized blue-phase liquid crystals achieved using a new organosilicone monomer.
    Bo S; Chen B; Zhu D; Feng S; Chen Z
    Soft Matter; 2022 Nov; 18(42):8188-8193. PubMed ID: 36268983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.