BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36190163)

  • 1. Beyond Human Touch Perception: An Adaptive Robotic Skin Based on Gallium Microgranules for Pressure Sensory Augmentation.
    Lee S; Byun SH; Kim CY; Cho S; Park S; Sim JY; Jeong JW
    Adv Mater; 2022 Nov; 34(44):e2204805. PubMed ID: 36190163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cutaneous Ionogel Mechanoreceptors for Soft Machines, Physiological Sensing, and Amputee Prostheses.
    Shen Z; Zhu X; Majidi C; Gu G
    Adv Mater; 2021 Sep; 33(38):e2102069. PubMed ID: 34337793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Skin-Inspired High-Performance Tactile Sensor for Accurate Recognition of Object Softness.
    Wang S; Fan X; Zhang Z; Su Z; Ding Y; Yang H; Zhang X; Wang J; Zhang J; Hu P
    ACS Nano; 2024 Jul; 18(26):17175-17184. PubMed ID: 38875126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Texture recognition and localization in amorphous robotic skin.
    Hughes D; Correll N
    Bioinspir Biomim; 2015 Sep; 10(5):055002. PubMed ID: 26352901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed Soft Sensors for Adaptive Sensing with Online and Offline Tunable Stiffness.
    He L; Herzig N; Nanayakkara T; Maiolino P
    Soft Robot; 2022 Dec; 9(6):1062-1073. PubMed ID: 35325579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency.
    Zhang J; Yao H; Mo J; Chen S; Xie Y; Ma S; Chen R; Luo T; Ling W; Qin L; Wang Z; Zhou W
    Nat Commun; 2022 Aug; 13(1):5076. PubMed ID: 36038557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From CySkin to ProxySKIN: Design, Implementation and Testing of a Multi-Modal Robotic Skin for Human-Robot Interaction.
    Giovinazzo F; Grella F; Sartore M; Adami M; Galletti R; Cannata G
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic Bioelectronic Sensors for Touch Perception, UV-Detection, and Nanopower Generation: Toward Self-Powered E-Skins.
    Ravi SK; Wu T; Udayagiri VS; Vu XM; Wang Y; Jones MR; Tan SC
    Adv Mater; 2018 Sep; 30(39):e1802290. PubMed ID: 30101422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static Tactile Sensing for a Robotic Electronic Skin via an Electromechanical Impedance-Based Approach.
    Liu C; Zhuang Y; Nasrollahi A; Lu L; Haider MF; Chang FK
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect.
    Wu C; Zhang T; Zhang J; Huang J; Tang X; Zhou T; Rong Y; Huang Y; Shi S; Zeng D
    Nanoscale Horiz; 2020 Mar; 5(3):541-552. PubMed ID: 32118233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-Mode Electronic Skin with Integrated Tactile Sensing and Visualized Injury Warning.
    Zhang Y; Fang Y; Li J; Zhou Q; Xiao Y; Zhang K; Luo B; Zhou J; Hu B
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37493-37500. PubMed ID: 28975784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-resolution, ultrabroad-range and sensitive capacitive tactile sensor based on a CNT/PDMS composite for robotic hands.
    Fu X; Zhang J; Xiao J; Kang Y; Yu L; Jiang C; Pan Y; Dong H; Gao S; Wang Y
    Nanoscale; 2021 Nov; 13(44):18780-18788. PubMed ID: 34750598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible touch-pressure sensor array with wireless transmission system for robotic skin.
    Huang Y; Fang D; Wu C; Wang W; Guo X; Liu P
    Rev Sci Instrum; 2016 Jun; 87(6):065007. PubMed ID: 27370489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable and All-Directional Strain-Insensitive Electronic Glove for Robotic Skins and Human-Machine Interfacing.
    Sharma S; Pradhan GB; Jeong S; Zhang S; Song H; Park JY
    ACS Nano; 2023 May; 17(9):8355-8366. PubMed ID: 37012260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidimensional Force Sensors Based on Triboelectric Nanogenerators for Electronic Skin.
    Wang Z; Bu T; Li Y; Wei D; Tao B; Yin Z; Zhang C; Wu H
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56320-56328. PubMed ID: 34783538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-equilibrium-Growing Aesthetic Ionic Skin for Fingertip-Like Strain-Undisturbed Tactile Sensation and Texture Recognition.
    Qiao H; Sun S; Wu P
    Adv Mater; 2023 May; 35(21):e2300593. PubMed ID: 36861380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Open-Environment Tactile Sensing System: Toward Simple and Efficient Material Identification.
    Wei X; Wang B; Wu Z; Wang ZL
    Adv Mater; 2022 Jul; 34(29):e2203073. PubMed ID: 35578973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Microfabricated Dual Slip-Pressure Sensor with Compliant Polymer-Liquid Metal Nanocomposite for Robotic Manipulation.
    Accoto D; Donadio A; Yang S; Ankit ; Mathews N
    Soft Robot; 2022 Jun; 9(3):509-517. PubMed ID: 34097537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Sensing at the Robot Fingertips: Toward Automated Taste Discrimination in Food Samples.
    Ciui B; Martin A; Mishra RK; Nakagawa T; Dawkins TJ; Lyu M; Cristea C; Sandulescu R; Wang J
    ACS Sens; 2018 Nov; 3(11):2375-2384. PubMed ID: 30226368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Soft Pressure Sensor Based on Bionic Spine-Pillar Structure for Robotics Motion Monitoring.
    Liu J; Yang Y; Peng J; Wang H; Chen D; Liu Y; Yang L; Chen H
    Soft Robot; 2022 Jun; 9(3):518-530. PubMed ID: 34407382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.