These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36190562)

  • 61. 7-12 Hz cortical oscillations: behavioral context and dynamics of prefrontal neuronal ensembles.
    Sakata S; Yamamori T; Sakurai Y
    Neuroscience; 2005; 134(4):1099-111. PubMed ID: 16019153
    [TBL] [Abstract][Full Text] [Related]  

  • 62. EEG dissociation induced by muscarinic receptor antagonists: Coherent 40 Hz oscillations in a background of slow waves and spindles.
    Castro-Zaballa S; Cavelli M; González J; Monti J; Falconi A; Torterolo P
    Behav Brain Res; 2019 Feb; 359():28-37. PubMed ID: 30321557
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Entrained neural oscillations in multiple frequency bands comodulate behavior.
    Henry MJ; Herrmann B; Obleser J
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14935-40. PubMed ID: 25267634
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nasal airflow promotes default mode network activity.
    Salimi M; Ayene F; Parsazadegan T; Nazari M; Jamali Y; Raoufy MR
    Respir Physiol Neurobiol; 2023 Jan; 307():103981. PubMed ID: 36330894
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Network and synaptic mechanisms underlying high frequency oscillations in the rat and cat olfactory bulb under ketamine-xylazine anesthesia.
    Średniawa W; Wróbel J; Kublik E; Wójcik DK; Whittington MA; Hunt MJ
    Sci Rep; 2021 Mar; 11(1):6390. PubMed ID: 33737621
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Respiration Modulates Olfactory Memory Consolidation in Humans.
    Arshamian A; Iravani B; Majid A; Lundström JN
    J Neurosci; 2018 Nov; 38(48):10286-10294. PubMed ID: 30348674
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The rhythm of memory: how breathing shapes memory function.
    Heck DH; Kozma R; Kay LM
    J Neurophysiol; 2019 Aug; 122(2):563-571. PubMed ID: 31215344
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Waveform detection by deep learning reveals multi-area spindles that are selectively modulated by memory load.
    Mofrad MH; Gilmore G; Koller D; Mirsattari SM; Burneo JG; Steven DA; Khan AR; Suller Marti A; Muller L
    Elife; 2022 Jun; 11():. PubMed ID: 35766286
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Local cortical activity of distant brain areas can phase-lock to the olfactory bulb's respiratory rhythm in the freely behaving rat.
    Rojas-Líbano D; Wimmer Del Solar J; Aguilar-Rivera M; Montefusco-Siegmund R; Maldonado PE
    J Neurophysiol; 2018 Sep; 120(3):960-972. PubMed ID: 29766764
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Slow rhythmic oscillations of EEG slow-wave amplitudes and their relations to midbrain reticular discharge.
    Oakson G; Steriade M
    Brain Res; 1983 Jun; 269(2):386-90. PubMed ID: 6883090
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Riding the slow wave: Exploring the role of entrained low-frequency oscillations in memory formation.
    Hickey P; Race E
    Neuropsychologia; 2021 Sep; 160():107962. PubMed ID: 34284040
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ten-Hour Exposure to Low-Dose Ketamine Enhances Corticostriatal Cross-Frequency Coupling and Hippocampal Broad-Band Gamma Oscillations.
    Ye T; Bartlett MJ; Schmit MB; Sherman SJ; Falk T; Cowen SL
    Front Neural Circuits; 2018; 12():61. PubMed ID: 30150926
    [No Abstract]   [Full Text] [Related]  

  • 73. Large Visual Stimuli Induce Two Distinct Gamma Oscillations in Primate Visual Cortex.
    Murty DVPS; Shirhatti V; Ravishankar P; Ray S
    J Neurosci; 2018 Mar; 38(11):2730-2744. PubMed ID: 29440388
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex.
    Litaudon P; Garcia S; Buonviso N
    Neuroscience; 2008 Oct; 156(3):781-7. PubMed ID: 18790020
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Slow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus.
    Moroni F; Nobili L; De Carli F; Massimini M; Francione S; Marzano C; Proserpio P; Cipolli C; De Gennaro L; Ferrara M
    Neuroimage; 2012 Mar; 60(1):497-504. PubMed ID: 22178807
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phase Synchronization Analysis of Natural Wake and Sleep States in Healthy Individuals Using a Novel Ensemble Phase Synchronization Measure.
    Nayak CS; Bhowmik A; Prasad PD; Pati S; Choudhury KK; Majumdar KK
    J Clin Neurophysiol; 2017 Jan; 34(1):77-83. PubMed ID: 27490322
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Two distinct olfactory bulb sublaminar networks involved in gamma and beta oscillation generation: a CSD study in the anesthetized rat.
    Fourcaud-Trocmé N; Courtiol E; Buonviso N
    Front Neural Circuits; 2014; 8():88. PubMed ID: 25126057
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Phase-Amplitude Coupling and Phase Synchronization Between Medial Temporal, Frontal and Posterior Brain Regions Support Episodic Autobiographical Memory Recall.
    Roehri N; Bréchet L; Seeber M; Pascual-Leone A; Michel CM
    Brain Topogr; 2022 Mar; 35(2):191-206. PubMed ID: 35080692
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Functional integration across oscillation frequencies by cross-frequency phase synchronization.
    Palva JM; Palva S
    Eur J Neurosci; 2018 Oct; 48(7):2399-2406. PubMed ID: 29094462
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Measuring directionality between neuronal oscillations of different frequencies.
    Jiang H; Bahramisharif A; van Gerven MA; Jensen O
    Neuroimage; 2015 Sep; 118():359-67. PubMed ID: 26025291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.