These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36190842)

  • 1. Spontaneous Charging of Drops on Lubricant-Infused Surfaces.
    Li S; Bista P; Weber SAL; Kappl M; Butt HJ
    Langmuir; 2022 Oct; 38(41):12610-12616. PubMed ID: 36190842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Charge of Sliding Water Drops.
    Wong WSY; Bista P; Li X; Veith L; Sharifi-Aghili A; Weber SAL; Butt HJ
    Langmuir; 2022 May; 38(19):6224-6230. PubMed ID: 35500291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of ions and humidity on charging of solid hydrophobic surfaces in slide electrification.
    Sbeih S; Lüleci A; Weber S; Steffen W
    Soft Matter; 2024 Jan; 20(3):558-565. PubMed ID: 38126532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slide electrification: charging of surfaces by moving water drops.
    Stetten AZ; Golovko DS; Weber SAL; Butt HJ
    Soft Matter; 2019 Nov; 15(43):8667-8679. PubMed ID: 31528956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Photocatalytically Active Lubricant-Impregnated Surface.
    Wooh S; Butt HJ
    Angew Chem Int Ed Engl; 2017 Apr; 56(18):4965-4969. PubMed ID: 28371003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of spontaneous charging of sliding water drops by plasma-surface treatment.
    Darvish F; Shumaly S; Li X; Dong Y; Diaz D; Khani M; Vollmer D; Butt HJ
    Sci Rep; 2024 May; 14(1):10640. PubMed ID: 38724519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slide electrification of drops at low velocities.
    Hinduja C; Butt HJ; Berger R
    Soft Matter; 2024 Apr; 20(15):3349-3358. PubMed ID: 38563221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disjoining pressure analysis of the lubricant nanofilm stability of liquid-infused surface upon lubricant depletion.
    Emelyanenko KA; Emelyanenko AM; Boinovich LB
    J Colloid Interface Sci; 2022 Jul; 618():121-128. PubMed ID: 35334360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dropwise Condensation in Ambient on a Depleted Lubricant-Infused Surface.
    Ranjan D; Chaudhary M; Zou A; Maroo SC
    ACS Appl Mater Interfaces; 2023 May; 15(17):21679-21689. PubMed ID: 37079801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface charge density and induced currents by self-charging sliding drops.
    Bista P; Ratschow AD; Stetten AZ; Butt HJ; Weber SAL
    Soft Matter; 2024 Jul; 20(26):5045-5052. PubMed ID: 38639086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of the Lubricant from Lubricant-Infused Surfaces due to an Air/Water Interface.
    Peppou-Chapman S; Neto C
    Langmuir; 2021 Mar; 37(10):3025-3037. PubMed ID: 33683128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cylindrical chains of water drops condensing on microstructured lubricant-infused surfaces.
    Kajiya T; Wooh S; Lee Y; Char K; Vollmer D; Butt HJ
    Soft Matter; 2016 Nov; 12(46):9377-9382. PubMed ID: 27828557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water Drop Evaporation on Slippery Liquid-Infused Porous Surfaces (SLIPS): Effect of Lubricant Thickness, Viscosity, Ridge Height, and Pattern Geometry.
    Üçüncüoğlu R; Erbil HY
    Langmuir; 2023 May; 39(18):6514-6528. PubMed ID: 37103333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer.
    Peppou-Chapman S; Hong JK; Waterhouse A; Neto C
    Chem Soc Rev; 2020 Jun; 49(11):3688-3715. PubMed ID: 32396597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the role of infusing lubricant composition in the interfacial interactions and properties of slippery surface.
    Wang J; Wang Y; Zhang K; Liu X; Zhang S; Wang D; Xie L
    J Colloid Interface Sci; 2024 Apr; 659():289-298. PubMed ID: 38176238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces.
    Kajiya T; Schellenberger F; Papadopoulos P; Vollmer D; Butt HJ
    Sci Rep; 2016 Apr; 6():23687. PubMed ID: 27040483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin Lubricant-Infused Vertical Graphene Nanoscaffolds for High-Performance Dropwise Condensation.
    Tripathy A; Lam CWE; Davila D; Donati M; Milionis A; Sharma CS; Poulikakos D
    ACS Nano; 2021 Sep; 15(9):14305-14315. PubMed ID: 34399576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Charge Deposition by Moving Drops Reduces Contact Angles.
    Li X; Ratschow AD; Hardt S; Butt HJ
    Phys Rev Lett; 2023 Dec; 131(22):228201. PubMed ID: 38101382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic contact angle measurements on lubricant infused surfaces.
    Kim D; Lee M; Kim JH; Lee J
    J Colloid Interface Sci; 2021 Mar; 586():647-654. PubMed ID: 33208248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.