BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3619085)

  • 21. The roles of node regression and elongation of the area pellucida in the formation of somites in avian embryos.
    Stern CD; Bellairs R
    J Embryol Exp Morphol; 1984 Jun; 81():75-92. PubMed ID: 6470614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cranial neural crest cells exhibit directed migration on the pronephric duct pathway: further evidence for an in vivo adhesion gradient.
    Zackson SL; Steinberg MS
    Dev Biol; 1986 Oct; 117(2):342-53. PubMed ID: 3758476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early neurogenesis in Amniote vertebrates.
    Le Douarin NM
    Int J Dev Biol; 2001; 45(1):373-8. PubMed ID: 11291868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of inducing, responding, and suppressing regions in an experimental model of notochord formation in avian embryos.
    Yuan S; Darnell DK; Schoenwolf GC
    Dev Biol; 1995 Dec; 172(2):567-84. PubMed ID: 8612972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphological left-right asymmetry of Hensen's node precedes the asymmetric expression of Shh and Fgf8 in the chick embryo.
    Dathe V; Gamel A; Männer J; Brand-Saberi B; Christ B
    Anat Embryol (Berl); 2002 Oct; 205(5-6):343-54. PubMed ID: 12382138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The genus Acipenser as a model for vertebrate urogenital development: the müllerian duct.
    Wrobel KH
    Anat Embryol (Berl); 2003 Mar; 206(4):255-71. PubMed ID: 12649724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Barrier inhibition of a temporal neuraxial influence on early chick somitic myogenesis.
    Borman WH; Yorde DE
    Dev Dyn; 1994 May; 200(1):68-78. PubMed ID: 8081015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A description of caudal migration during growth leading to the formation of the pericardial and pleural coeloms, to caudal movement of the aortic arches, and to development of the shoulder.
    Searls RL
    Am J Anat; 1986 Oct; 177(2):271-83. PubMed ID: 3788823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural tube and notochord promote in vitro myogenesis in single somite explants.
    Stern HM; Hauschka SD
    Dev Biol; 1995 Jan; 167(1):87-103. PubMed ID: 7851665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wnt 6 regulates the epithelialisation process of the segmental plate mesoderm leading to somite formation.
    Schmidt C; Stoeckelhuber M; McKinnell I; Putz R; Christ B; Patel K
    Dev Biol; 2004 Jul; 271(1):198-209. PubMed ID: 15196961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A scanning electron microscopic study of the development of the shoulder, visceral arches, and the region ventral to the cervical somites of the chick embryo.
    Yander G; Searls RL
    Am J Anat; 1980 Jan; 157(1):27-39. PubMed ID: 7405860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Foregut endoderm is specified early in avian development through signal(s) emanating from Hensen's node or its derivatives.
    Matsushita S; Urase K; Komatsu A; Scotting PJ; Kuroiwa A; Yasugi S
    Mech Dev; 2008; 125(5-6):377-95. PubMed ID: 18374547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation.
    Aulehla A; Johnson RL
    Dev Biol; 1999 Mar; 207(1):49-61. PubMed ID: 10049564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Halves of epithelial somites and segmental plate show distinct muscle differentiation behavior in vitro compared to entire somites and segmental plate.
    Gamel AJ; Brand-Saberi B; Christ B
    Dev Biol; 1995 Dec; 172(2):625-39. PubMed ID: 8612977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of the cCdx-B homeobox gene in chick embryo suggests its participation in rostrocaudal axial patterning.
    Morales AV; de la Rosa EJ; de Pablo F
    Dev Dyn; 1996 Aug; 206(4):343-53. PubMed ID: 8853984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphological and experimental studies of the somitomeric organization of the segmental plate in snapping turtle embryos.
    Packard DS; Meier S
    J Embryol Exp Morphol; 1984 Dec; 84():35-48. PubMed ID: 6533256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphogenesis of the axolotl pronephric duct: a model system for the study of cell migration in vivo.
    Drawbridge J; Steinberg MS
    Int J Dev Biol; 1996 Aug; 40(4):709-13. PubMed ID: 8877443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis.
    Bracken CM; Mizeracka K; McLaughlin KA
    Dev Dyn; 2008 Jan; 237(1):132-44. PubMed ID: 18069689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Segmentation in vertebrates: a molecular clock linked to periodic somite formation].
    Palmeirim I
    J Soc Biol; 1999; 193(3):243-56. PubMed ID: 10542954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early development of the müllerian duct in avian embryos with reference to the human. An ultrastructural and immunohistochemical study.
    Jacob M; Konrad K; Jacob HJ
    Cells Tissues Organs; 1999; 164(2):63-81. PubMed ID: 10352885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.