These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36190898)
1. Palette of Rechargeable Mechanoluminescent Fluids Produced by a Biomineral-Inspired Suppressed Dissolution Approach. Yang F; Wu X; Cui H; Jiang S; Ou Z; Cai S; Hong G J Am Chem Soc; 2022 Oct; 144(40):18406-18418. PubMed ID: 36190898 [TBL] [Abstract][Full Text] [Related]
2. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Wu X; Zhu X; Chong P; Liu J; Andre LN; Ong KS; Brinson K; Mahdi AI; Li J; Fenno LE; Wang H; Hong G Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26332-26342. PubMed ID: 31811026 [TBL] [Abstract][Full Text] [Related]
3. Ultrasound-Induced Cascade Amplification in a Mechanoluminescent Nanotransducer for Enhanced Sono-Optogenetic Deep Brain Stimulation. Wang W; Kevin Tang KW; Pyatnitskiy I; Liu X; Shi X; Huo D; Jeong J; Wynn T; Sangani A; Baker A; Hsieh JC; Lozano AR; Artman B; Fenno L; Buch VP; Wang H ACS Nano; 2023 Dec; 17(24):24936-24946. PubMed ID: 38096422 [TBL] [Abstract][Full Text] [Related]
4. Ultrasound-activated luminescence with color tunability enabled by mechanoluminescent colloids and perovskite quantum dots. Yang F; Cui H; Wu X; Kim SJ; Hong G Nanoscale; 2023 Jan; 15(4):1629-1636. PubMed ID: 36625323 [TBL] [Abstract][Full Text] [Related]
5. Activation of mechanoluminescent nanotransducers by focused ultrasound enables light delivery to deep-seated tissue in vivo. Jiang S; Wu X; Yang F; Rommelfanger NJ; Hong G Nat Protoc; 2023 Dec; 18(12):3787-3820. PubMed ID: 37914782 [TBL] [Abstract][Full Text] [Related]
6. Mechanoluminescence ratiometric thermometry via MgF Cai C; Li L; Li P; Li T; Peng D; Yang Y Opt Lett; 2022 Dec; 47(23):6293-6296. PubMed ID: 37219230 [TBL] [Abstract][Full Text] [Related]
7. Principles and applications of sono-optogenetics. Yang F; Kim SJ; Wu X; Cui H; Hahn SK; Hong G Adv Drug Deliv Rev; 2023 Mar; 194():114711. PubMed ID: 36708773 [TBL] [Abstract][Full Text] [Related]
8. A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source. Yang F; Wu X; Cui H; Ou Z; Jiang S; Cai S; Zhou Q; Wong BG; Huang H; Hong G Sci Adv; 2022 Jul; 8(30):eabo6743. PubMed ID: 35905189 [TBL] [Abstract][Full Text] [Related]
9. Ultrasound-Triggered In Situ Photon Emission for Noninvasive Optogenetics. Wang W; Wu X; Kevin Tang KW; Pyatnitskiy I; Taniguchi R; Lin P; Zhou R; Capocyan SLC; Hong G; Wang H J Am Chem Soc; 2023 Jan; 145(2):1097-1107. PubMed ID: 36606703 [TBL] [Abstract][Full Text] [Related]
10. Smart Mechanoluminescent Phosphors: A Review of Strontium-Aluminate-Based Materials, Properties, and Their Advanced Application Technologies. Huang Z; Chen B; Ren B; Tu D; Wang Z; Wang C; Zheng Y; Li X; Wang D; Ren Z; Qu S; Chen Z; Xu C; Fu Y; Peng D Adv Sci (Weinh); 2023 Jan; 10(3):e2204925. PubMed ID: 36372543 [TBL] [Abstract][Full Text] [Related]
11. Achieving Ultrasound-Excited Emission with Organic Mechanoluminescent Materials. Chang K; Gu J; Yuan L; Guo J; Wu X; Fan Y; Liao Q; Ye G; Li Q; Li Z Adv Mater; 2024 Sep; 36(38):e2407875. PubMed ID: 39049679 [TBL] [Abstract][Full Text] [Related]
12. Single-Particle Studies Reveal a Nanoscale Mechanism for Elastic, Bright, and Repeatable ZnS:Mn Mechanoluminescence in a Low-Pressure Regime. Mukhina MV; Tresback J; Ondry JC; Akey A; Alivisatos AP; Kleckner N ACS Nano; 2021 Mar; 15(3):4115-4133. PubMed ID: 33596042 [TBL] [Abstract][Full Text] [Related]
13. Recent Advances in Doped Mechanoluminescent Phosphors. Peng D; Chen B; Wang F Chempluschem; 2015 Aug; 80(8):1209-1215. PubMed ID: 31973313 [TBL] [Abstract][Full Text] [Related]
14. Optimizing the Mechanoluminescent Properties of CaZnOS:Tb via Microwave-Assisted Synthesis: A Comparative Study with Conventional Thermal Methods. Ugbo FC; Porcu S; Corpino R; Pinna A; Carbonaro CM; Chiriu D; Smet PF; Ricci PC Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176393 [TBL] [Abstract][Full Text] [Related]
16. Mechanically Triggered Bright Chemiluminescence from Polymers by Exploiting a Synergy between Masked 2-Furylcarbinol Mechanophores and 1,2-Dioxetane Chemiluminophores. Liu P; Tseng YL; Ge L; Zeng T; Shabat D; Robb MJ J Am Chem Soc; 2024 Aug; 146(32):22151-22156. PubMed ID: 39078378 [TBL] [Abstract][Full Text] [Related]
17. Ultrasensitive and robust mechanoluminescent living composites. Li C; Schramma N; Wang Z; Qari NF; Jalaal M; Latz MI; Cai S Sci Adv; 2023 Oct; 9(42):eadi8643. PubMed ID: 37862415 [TBL] [Abstract][Full Text] [Related]
18. Frontispiece: Recent Advances in Doped Mechanoluminescent Phosphors. Peng D; Chen B; Wang F Chempluschem; 2015 Aug; 80(8):. PubMed ID: 31973304 [TBL] [Abstract][Full Text] [Related]
19. A mechanoluminescent material, ZnS:Mn,Li, with enhanced brightness for visualizing dental occlusion. Wang Z; Zhao S; Wang Y; Wang F; Ansari AA; Lv R Anal Bioanal Chem; 2024 Jul; 416(17):3975-3984. PubMed ID: 37801119 [TBL] [Abstract][Full Text] [Related]
20. Wireless Optogenetic Modulation of Cortical Neurons Enabled by Radioluminescent Nanoparticles. Chen Z; Tsytsarev V; Finfrock YZ; Antipova OA; Cai Z; Arakawa H; Lischka FW; Hooks BM; Wilton R; Wang D; Liu Y; Gaitan B; Tao Y; Chen Y; Erzurumlu RS; Yang H; Rozhkova EA ACS Nano; 2021 Mar; 15(3):5201-5208. PubMed ID: 33625219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]