BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36191009)

  • 1. Crypt-Villus Scaffold Architecture for Bioengineering Functional Human Intestinal Epithelium.
    Rudolph SE; Longo BN; Tse MW; Houchin MR; Shokoufandeh MM; Chen Y; Kaplan DL
    ACS Biomater Sci Eng; 2022 Nov; 8(11):4942-4955. PubMed ID: 36191009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.
    Wang Y; Gunasekara DB; Reed MI; DiSalvo M; Bultman SJ; Sims CE; Magness ST; Allbritton NL
    Biomaterials; 2017 Jun; 128():44-55. PubMed ID: 28288348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography.
    Creff J; Courson R; Mangeat T; Foncy J; Souleille S; Thibault C; Besson A; Malaquin L
    Biomaterials; 2019 Nov; 221():119404. PubMed ID: 31419651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium.
    Dosh RH; Essa A; Jordan-Mahy N; Sammon C; Le Maitre CL
    Acta Biomater; 2017 Oct; 62():128-143. PubMed ID: 28859901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-patterned endogenous stroma equivalent induces polarized crypt-villus architecture of human small intestinal epithelium.
    De Gregorio V; Imparato G; Urciuolo F; Netti PA
    Acta Biomater; 2018 Nov; 81():43-59. PubMed ID: 30282052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal Villi Model with Blood Capillaries Fabricated Using Collagen-Based Bioink and Dual-Cell-Printing Process.
    Kim W; Kim G
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41185-41196. PubMed ID: 30419164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bioprinted 3D gut model with crypt-villus structures to mimic the intestinal epithelial-stromal microenvironment.
    Torras N; Zabalo J; Abril E; Carré A; García-Díaz M; Martínez E
    Biomater Adv; 2023 Oct; 153():213534. PubMed ID: 37356284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression.
    Kim SH; Chi M; Yi B; Kim SH; Oh S; Kim Y; Park S; Sung JH
    Integr Biol (Camb); 2014 Dec; 6(12):1122-31. PubMed ID: 25200891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of l-pNIPAM hydrogel as a 3D-scaffold for intestinal crypts and stem cell tissue engineering.
    Dosh RH; Jordan-Mahy N; Sammon C; Le Maitre CL
    Biomater Sci; 2019 Sep; 7(10):4310-4324. PubMed ID: 31410428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Material 3D-Printed Intestinal Model Devices with Integrated Villi-like Scaffolds.
    Taebnia N; Zhang R; Kromann EB; Dolatshahi-Pirouz A; Andresen TL; Larsen NB
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58434-58446. PubMed ID: 34866391
    [No Abstract]   [Full Text] [Related]  

  • 11. Bioengineered 3D Tissue Model of Intestine Epithelium with Oxygen Gradients to Sustain Human Gut Microbiome.
    Chen Y; Rudolph SE; Longo BN; Pace F; Roh TT; Condruti R; Gee M; Watnick PI; Kaplan DL
    Adv Healthc Mater; 2022 Aug; 11(16):e2200447. PubMed ID: 35686484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model.
    Macedo MH; Torras N; García-Díaz M; Barrias C; Sarmento B; Martínez E
    Biomater Adv; 2023 Oct; 153():213564. PubMed ID: 37482042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink.
    Kim W; Kim GH
    Theranostics; 2020; 10(6):2495-2508. PubMed ID: 32194815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert.
    Shin W; Kim HJ
    Nat Protoc; 2022 Mar; 17(3):910-939. PubMed ID: 35110737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue Engineering Laboratory Models of the Small Intestine.
    Dosh RH; Jordan-Mahy N; Sammon C; Le Maitre CL
    Tissue Eng Part B Rev; 2018 Apr; 24(2):98-111. PubMed ID: 28922991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation.
    Costello CM; Hongpeng J; Shaffiey S; Yu J; Jain NK; Hackam D; March JC
    Biotechnol Bioeng; 2014 Jun; 111(6):1222-32. PubMed ID: 24390638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple three-dimensional gut model constructed in a restricted ductal microspace induces intestinal epithelial cell integrity and facilitates absorption assays.
    Nakajima T; Sasaki K; Yamamori A; Sakurai K; Miyata K; Watanabe T; Matsunaga YT
    Biomater Sci; 2020 Oct; 8(20):5615-5627. PubMed ID: 32945306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enriched Intestinal Stem Cell Seeding Improves the Architecture of Tissue-Engineered Intestine.
    Liu Y; Rager T; Johnson J; Enmark J; Besner GE
    Tissue Eng Part C Methods; 2015 Aug; 21(8):816-24. PubMed ID: 25603285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spray Delivery of Intestinal Organoids to Reconstitute Epithelium on Decellularized Native Extracellular Matrix.
    Schwartz DM; Pehlivaner Kara MO; Goldstein AM; Ott HC; Ekenseair AK
    Tissue Eng Part C Methods; 2017 Sep; 23(9):565-573. PubMed ID: 28756760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.