BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36191154)

  • 1. 3D Printing of Ridged FeS
    Cardenas JA; Bullivant JP; Kolesnichenko IV; Roach DJ; Gallegos MA; Coker EN; Lambert TN; Allcorn E; Talin AA; Cook AW; Harrison KL
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45342-45351. PubMed ID: 36191154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur-Embedded FeS
    Mwizerwa JP; Zhang Q; Han F; Wan H; Cai L; Wang C; Yao X
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18519-18525. PubMed ID: 32216290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of ion-electron conduction network on FeS
    Shen C; Liu Y; Shi Y; Liu X; Jiang Y; Huang S; Zhang J; Zhao B
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):85-93. PubMed ID: 37708735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of layered vanadium disulfide for water-in-salt electrolyte zinc-ion batteries.
    Tagliaferri S; Nagaraju G; Sokolikova M; Quintin-Baxendale R; Mattevi C
    Nanoscale Horiz; 2024 Apr; 9(5):742-751. PubMed ID: 38469720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the Oxidation End-Product Toward Polysulfides-Free and Sustainable Lithium-Pyrite Thermal Batteries.
    Jin Y; Lu H; Lyu N; Zhang D; Jiang X; Sun B; Liu K; Wu H
    Adv Sci (Weinh); 2023 Feb; 10(6):e2205888. PubMed ID: 36603164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Electrochemical Performance of FeS
    Ashby DS; Horner JS; Whang G; Lapp AS; Roberts SA; Dunn B; Kolesnichenko IV; Lambert TN; Talin AA
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing of Customized Li-Ion Batteries with Thick Electrodes.
    Wei TS; Ahn BY; Grotto J; Lewis JA
    Adv Mater; 2018 Apr; 30(16):e1703027. PubMed ID: 29543991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials.
    Walter M; Zünd T; Kovalenko MV
    Nanoscale; 2015 May; 7(20):9158-63. PubMed ID: 25941034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Pitaya-Structured Pyrite as High Energy Density Cathode for High-Rate Lithium Batteries.
    Xu X; Liu J; Liu Z; Shen J; Hu R; Liu J; Ouyang L; Zhang L; Zhu M
    ACS Nano; 2017 Sep; 11(9):9033-9040. PubMed ID: 28813140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Ink Writing of Li
    Liu Z; Tian X; Liu M; Duan S; Ren Y; Ma H; Tang K; Shi J; Hou S; Jin H; Cao G
    Small; 2021 Feb; 17(6):e2002866. PubMed ID: 33470520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-Coated ZnS-FeS
    Naveenkumar P; Maniyazagan M; Kang N; Yang HW; Kang WS; Kim SJ
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review.
    Fonseca N; Thummalapalli SV; Jambhulkar S; Ravichandran D; Zhu Y; Patil D; Thippanna V; Ramanathan A; Xu W; Guo S; Ko H; Fagade M; Kannan AM; Nian Q; Asadi A; Miquelard-Garnier G; Dmochowska A; Hassan MK; Al-Ejji M; El-Dessouky HM; Stan F; Song K
    Small; 2023 Dec; 19(50):e2302718. PubMed ID: 37501325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
    Rocha VG; García-Tuñón E; Botas C; Markoulidis F; Feilden E; D'Elia E; Ni N; Shaffer M; Saiz E
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37136-37145. PubMed ID: 28920439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing Manufacturing of Lithium Batteries: Prospects and Challenges toward Practical Applications.
    Huo S; Sheng L; Su B; Xue W; Wang L; Xu H; He X
    Adv Mater; 2024 Feb; 36(8):e2310396. PubMed ID: 37991107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO₄ Electrodes by Low Temperature Direct Writing Process.
    Liu C; Cheng X; Li B; Chen Z; Mi S; Lao C
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28796182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry-processed technology for flexible and high-performance FeS
    Shen C; Hu L; Tao H; Liu Y; Li Q; Li W; Ma T; Zhao B; Zhang J; Jiang Y
    J Colloid Interface Sci; 2024 Jul; 666():472-480. PubMed ID: 38613970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct-ink-write printing of hydrogels using dilute inks.
    Li X; Zhang P; Li Q; Wang H; Yang C
    iScience; 2021 Apr; 24(4):102319. PubMed ID: 33870134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.
    Fu K; Wang Y; Yan C; Yao Y; Chen Y; Dai J; Lacey S; Wang Y; Wan J; Li T; Wang Z; Xu Y; Hu L
    Adv Mater; 2016 Apr; 28(13):2587-94. PubMed ID: 26833897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printing Electrolytes for Solid-State Batteries.
    McOwen DW; Xu S; Gong Y; Wen Y; Godbey GL; Gritton JE; Hamann TR; Dai J; Hitz GT; Hu L; Wachsman ED
    Adv Mater; 2018 May; 30(18):e1707132. PubMed ID: 29575234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.