BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36191192)

  • 1. A single helix repression domain is functional across diverse eukaryotes.
    Leydon AR; Ramos Báez R; Nemhauser JL
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2206986119. PubMed ID: 36191192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repression by the
    Leydon AR; Wang W; Gala HP; Gilmour S; Juarez-Solis S; Zahler ML; Zemke JE; Zheng N; Nemhauser JL
    Elife; 2021 Jun; 10():. PubMed ID: 34075876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the
    Martin-Arevalillo R; Nanao MH; Larrieu A; Vinos-Poyo T; Mast D; Galvan-Ampudia C; Brunoud G; Vernoux T; Dumas R; Parcy F
    Proc Natl Acad Sci U S A; 2017 Jul; 114(30):8107-8112. PubMed ID: 28698367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The TOPLESS interactome: a framework for gene repression in Arabidopsis.
    Causier B; Ashworth M; Guo W; Davies B
    Plant Physiol; 2012 Jan; 158(1):423-38. PubMed ID: 22065421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function of multiple Lis-Homology domain/WD-40 repeat-containing proteins in feed-forward transcriptional repression by silencing mediator for retinoic and thyroid receptor/nuclear receptor corepressor complexes.
    Choi HK; Choi KC; Kang HB; Kim HC; Lee YH; Haam S; Park HG; Yoon HG
    Mol Endocrinol; 2008 May; 22(5):1093-104. PubMed ID: 18202150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CC-type glutaredoxins recruit the transcriptional co-repressor TOPLESS to TGA-dependent target promoters in Arabidopsis thaliana.
    Uhrig JF; Huang LJ; Barghahn S; Willmer M; Thurow C; Gatz C
    Biochim Biophys Acta Gene Regul Mech; 2017 Feb; 1860(2):218-226. PubMed ID: 27838237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis.
    An C; Deng L; Zhai H; You Y; Wu F; Zhai Q; Goossens A; Li C
    Mol Plant; 2022 Aug; 15(8):1329-1346. PubMed ID: 35780296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors.
    Ke J; Ma H; Gu X; Thelen A; Brunzelle JS; Li J; Xu HE; Melcher K
    Sci Adv; 2015 Jul; 1(6):e1500107. PubMed ID: 26601214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repressor for hire! The vital roles of TOPLESS-mediated transcriptional repression in plants.
    Plant AR; Larrieu A; Causier B
    New Phytol; 2021 Aug; 231(3):963-973. PubMed ID: 33909309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C-terminal WD40 repeats on the TOPLESS co-repressor function as a protein-protein interaction surface.
    Collins J; O'Grady K; Chen S; Gurley W
    Plant Mol Biol; 2019 May; 100(1-2):47-58. PubMed ID: 30783952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association with the nuclear matrix and interaction with Groucho and RUNX proteins regulate the transcription repression activity of the basic helix loop helix factor Hes1.
    McLarren KW; Theriault FM; Stifani S
    J Biol Chem; 2001 Jan; 276(2):1578-84. PubMed ID: 11035023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TOPLESS Corepressors as an Emerging Hub of Plant Pathogen Effectors.
    Khan M; Djamei A
    Mol Plant Microbe Interact; 2024 Mar; 37(3):190-195. PubMed ID: 38205771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors.
    Levanon D; Goldstein RE; Bernstein Y; Tang H; Goldenberg D; Stifani S; Paroush Z; Groner Y
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11590-5. PubMed ID: 9751710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TOPLESS co-repressor interactions and their evolutionary conservation in plants.
    Causier B; Lloyd J; Stevens L; Davies B
    Plant Signal Behav; 2012 Mar; 7(3):325-8. PubMed ID: 22476455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conserved function of corepressors is to nucleate assembly of the transcriptional preinitiation complex.
    Leydon AR; Downing B; Sanchez JS; Loll-Krippleber R; Belliveau NM; Rodriguez-Mias RA; Bauer A; Watson IJ; Bae L; Villén J; Brown GW; Nemhauser JL
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of TOPLESS/TOPLESS-RELATED co-repressors and functional characterization of BnaA9.TPL regulating the embryogenesis and leaf morphology in rapeseed.
    Zhang X; Chen Y; Chen H; Guo C; Su X; Mu T; Feng B; Wang Y; Liu Z; Zhang B; Li Y; Zhang H; Yuan W; Li H
    Plant Sci; 2024 Jun; 346():112149. PubMed ID: 38851591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional dissection of the global repressor Tup1 in yeast: dominant role of the C-terminal repression domain.
    Zhang Z; Varanasi U; Trumbly RJ
    Genetics; 2002 Jul; 161(3):957-69. PubMed ID: 12136003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional repression by Kluyveromyces lactis Tup1 in Saccharomyces cerevisiae.
    Lamas-Maceiras M; Freire-Picos MA; Torres AM
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):79-84. PubMed ID: 20820861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tup1 Paralog
    Bui LN; Iosue CL; Wykoff DD
    mSphere; 2022 Apr; 7(2):e0076521. PubMed ID: 35341317
    [No Abstract]   [Full Text] [Related]  

  • 20. Mad proteins contain a dominant transcription repression domain.
    Ayer DE; Laherty CD; Lawrence QA; Armstrong AP; Eisenman RN
    Mol Cell Biol; 1996 Oct; 16(10):5772-81. PubMed ID: 8816491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.