These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36191223)

  • 1. Replication stalling activates SSB for recruitment of DNA damage tolerance factors.
    Thrall ES; Piatt SC; Chang S; Loparo JJ
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2208875119. PubMed ID: 36191223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentalization of the replication fork by single-stranded DNA-binding protein regulates translesion synthesis.
    Chang S; Thrall ES; Laureti L; Piatt SC; Pagès V; Loparo JJ
    Nat Struct Mol Biol; 2022 Sep; 29(9):932-941. PubMed ID: 36127468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. During Translesion Synthesis, Escherichia coli DinB89 (T120P) Alters Interactions of DinB (Pol IV) with Pol III Subunit Assemblies and SSB, but Not with the β Clamp.
    Scotland MK; Homiski C; Sutton MD
    J Bacteriol; 2022 Apr; 204(4):e0061121. PubMed ID: 35285726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive View of Translesion Synthesis in Escherichia coli.
    Fujii S; Fuchs RP
    Microbiol Mol Biol Rev; 2020 Aug; 84(3):. PubMed ID: 32554755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule imaging reveals multiple pathways for the recruitment of translesion polymerases after DNA damage.
    Thrall ES; Kath JE; Chang S; Loparo JJ
    Nat Commun; 2017 Dec; 8(1):2170. PubMed ID: 29255195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Genetic Selection for dinB Mutants Reveals an Interaction between DNA Polymerase IV and the Replicative Polymerase That Is Required for Translesion Synthesis.
    Scotland MK; Heltzel JM; Kath JE; Choi JS; Berdis AJ; Loparo JJ; Sutton MD
    PLoS Genet; 2015 Sep; 11(9):e1005507. PubMed ID: 26352807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exchange between Escherichia coli polymerases II and III on a processivity clamp.
    Kath JE; Chang S; Scotland MK; Wilbertz JH; Jergic S; Dixon NE; Sutton MD; Loparo JJ
    Nucleic Acids Res; 2016 Feb; 44(4):1681-90. PubMed ID: 26657641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli.
    Henrikus SS; Wood EA; McDonald JP; Cox MM; Woodgate R; Goodman MF; van Oijen AM; Robinson A
    PLoS Genet; 2018 Jan; 14(1):e1007161. PubMed ID: 29351274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase IV mediates efficient and quick recovery of replication forks stalled at N2-dG adducts.
    Ikeda M; Furukohri A; Philippin G; Loechler E; Akiyama MT; Katayama T; Fuchs RP; Maki H
    Nucleic Acids Res; 2014 Jul; 42(13):8461-72. PubMed ID: 24957605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The translesion polymerase Pol Y1 is a constitutive component of the B. subtilis replication machinery.
    Marrin ME; Foster MR; Santana CM; Choi Y; Jassal AS; Rancic SJ; Greenwald CR; Drucker MN; Feldman DT; Thrall ES
    Nucleic Acids Res; 2024 Jul; ():. PubMed ID: 39051562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filling gaps in translesion DNA synthesis in human cells.
    Quinet A; Lerner LK; Martins DJ; Menck CFM
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt B):127-142. PubMed ID: 30442338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bipartite interaction with the processivity clamp potentiates Pol IV-mediated TLS.
    Chang S; Laureti L; Thrall ES; Kay MS; Philippin G; Jergic S; Pagès V; Loparo JJ
    bioRxiv; 2024 May; ():. PubMed ID: 38853898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.
    Fuchs RP; Fujii S
    DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage.
    Mallik S; Popodi EM; Hanson AJ; Foster PL
    J Bacteriol; 2015 Sep; 197(17):2792-809. PubMed ID: 26100038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of translesion replication across an abasic site by DNA polymerase IV of Escherichia coli.
    Maor-Shoshani A; Hayashi K; Ohmori H; Livneh Z
    DNA Repair (Amst); 2003 Nov; 2(11):1227-38. PubMed ID: 14599744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein.
    Wessel SR; Marceau AH; Massoni SC; Zhou R; Ha T; Sandler SJ; Keck JL
    J Biol Chem; 2013 Jun; 288(24):17569-78. PubMed ID: 23629733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between Escherichia coli DNA polymerase IV and single-stranded DNA-binding protein is required for DNA synthesis on SSB-coated DNA.
    Furukohri A; Nishikawa Y; Akiyama MT; Maki H
    Nucleic Acids Res; 2012 Jul; 40(13):6039-48. PubMed ID: 22447448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gatekeeping function of the replicative polymerase controls pathway choice in the resolution of lesion-stalled replisomes.
    Chang S; Naiman K; Thrall ES; Kath JE; Jergic S; Dixon NE; Fuchs RP; Loparo JJ
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25591-25601. PubMed ID: 31796591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis.
    Kath JE; Jergic S; Heltzel JM; Jacob DT; Dixon NE; Sutton MD; Walker GC; Loparo JJ
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7647-52. PubMed ID: 24825884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SSB and the RecG DNA helicase: an intimate association to rescue a stalled replication fork.
    Bianco PR; Lyubchenko YL
    Protein Sci; 2017 Apr; 26(4):638-649. PubMed ID: 28078722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.