These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 36191395)
21. Automated detection of pneumoconiosis with multilevel deep features learned from chest X-Ray radiographs. Devnath L; Luo S; Summons P; Wang D Comput Biol Med; 2021 Feb; 129():104125. PubMed ID: 33310394 [TBL] [Abstract][Full Text] [Related]
22. Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography. Wang X; Yu J; Zhu Q; Li S; Zhao Z; Yang B; Pu J Occup Environ Med; 2020 Sep; 77(9):597-602. PubMed ID: 32471837 [TBL] [Abstract][Full Text] [Related]
23. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
24. CGP-Uformer: A low-dose CT image denoising Uformer based on channel graph perception. Yan H; Fang C; Liu P; Qiao Z J Xray Sci Technol; 2023; 31(6):1189-1205. PubMed ID: 37718835 [TBL] [Abstract][Full Text] [Related]
25. Application of high resolution computed tomography image assisted classification model of middle ear diseases based on 3D-convolutional neural network. Su R; Song J; Wang Z; Mao S; Mao Y; Wu X; Hou M Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug; 47(8):1037-1048. PubMed ID: 36097771 [TBL] [Abstract][Full Text] [Related]
26. Res-trans networks for lung nodule classification. Liu D; Liu F; Tie Y; Qi L; Wang F Int J Comput Assist Radiol Surg; 2022 Jun; 17(6):1059-1068. PubMed ID: 35290646 [TBL] [Abstract][Full Text] [Related]
27. A Fully Deep Learning Paradigm for Pneumoconiosis Staging on Chest Radiographs. Sun W; Wu D; Luo Y; Liu L; Zhang H; Wu S; Zhang Y; Wang C; Zheng H; Shen J; Luo C IEEE J Biomed Health Inform; 2022 Oct; 26(10):5154-5164. PubMed ID: 35834466 [TBL] [Abstract][Full Text] [Related]
28. WiTUnet: A U-shaped architecture integrating CNN and Transformer for improved feature alignment and local information fusion. Wang B; Deng F; Jiang P; Wang S; Han X; Zhang Z Sci Rep; 2024 Oct; 14(1):25525. PubMed ID: 39462127 [TBL] [Abstract][Full Text] [Related]
29. A novel transformer autoencoder for multi-modal emotion recognition with incomplete data. Cheng C; Liu W; Fan Z; Feng L; Jia Z Neural Netw; 2024 Apr; 172():106111. PubMed ID: 38237444 [TBL] [Abstract][Full Text] [Related]
30. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. Saeedi S; Rezayi S; Keshavarz H; R Niakan Kalhori S BMC Med Inform Decis Mak; 2023 Jan; 23(1):16. PubMed ID: 36691030 [TBL] [Abstract][Full Text] [Related]
31. FDB-Net: Fusion double branch network combining CNN and transformer for medical image segmentation. Jiang Z; Wu Y; Huang L; Gu M J Xray Sci Technol; 2024; 32(4):931-951. PubMed ID: 38848160 [TBL] [Abstract][Full Text] [Related]
32. AMFP-net: Adaptive multi-scale feature pyramid network for diagnosis of pneumoconiosis from chest X-ray images. Alam MS; Wang D; Sowmya A Artif Intell Med; 2024 Aug; 154():102917. PubMed ID: 38917599 [TBL] [Abstract][Full Text] [Related]
33. A transformer-guided cross-modality adaptive feature fusion framework for esophageal gross tumor volume segmentation. Yue Y; Li N; Zhang G; Xing W; Zhu Z; Liu X; Song S; Ta D Comput Methods Programs Biomed; 2024 Jun; 251():108216. PubMed ID: 38761412 [TBL] [Abstract][Full Text] [Related]
34. SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer. Jiang Y; Zhang Y; Lin X; Dong J; Cheng T; Liang J Brain Sci; 2022 Jun; 12(6):. PubMed ID: 35741682 [TBL] [Abstract][Full Text] [Related]
35. Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network. Qi X; Brown LG; Foran DJ; Nosher J; Hacihaliloglu I Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):197-206. PubMed ID: 33420641 [TBL] [Abstract][Full Text] [Related]
36. The diagnosis of early pneumoconiosis in dust-exposed workers: comparison of chest radiography and computed tomography. Hayashi H; Ashizawa K; Takahashi M; Kato K; Arakawa H; Kishimoto T; Otsuka Y; Noma S; Honda S Acta Radiol; 2022 Jul; 63(7):909-913. PubMed ID: 34098754 [TBL] [Abstract][Full Text] [Related]
37. Dual-branch Transformer for semi-supervised medical image segmentation. Huang X; Zhu Y; Shao M; Xia M; Shen X; Wang P; Wang X J Appl Clin Med Phys; 2024 Oct; 25(10):e14483. PubMed ID: 39133901 [TBL] [Abstract][Full Text] [Related]
38. TSCA-Net: Transformer based spatial-channel attention segmentation network for medical images. Fu Y; Liu J; Shi J Comput Biol Med; 2024 Mar; 170():107938. PubMed ID: 38219644 [TBL] [Abstract][Full Text] [Related]
39. DECTNet: Dual Encoder Network combined convolution and Transformer architecture for medical image segmentation. Li B; Xu Y; Wang Y; Zhang B PLoS One; 2024; 19(4):e0301019. PubMed ID: 38573957 [TBL] [Abstract][Full Text] [Related]
40. DE-UFormer: U-shaped dual encoder architectures for brain tumor segmentation. Dong Y; Wang T; Ma C; Li Z; Chellali R Phys Med Biol; 2023 Sep; 68(19):. PubMed ID: 37699403 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]