BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 36191430)

  • 1. Novel 1,3-diaryl pyrazole derivatives bearing methylsulfonyl moiety: Design, synthesis, molecular docking and dynamics, with dual activities as anti-inflammatory and anticancer agents through selectively targeting COX-2.
    Shaker AMM; Shahin MI; AboulMagd AM; Abdel Aleem SA; Abdel-Rahman HM; Abou El Ella DA
    Bioorg Chem; 2022 Dec; 129():106143. PubMed ID: 36191430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis, modeling studies and biological evaluation of pyrazole derivatives linked to oxime and nitrate moieties as nitric oxide donor selective COX-2 and aromatase inhibitors with dual anti-inflammatory and anti-neoplastic activities.
    A A Fadaly W; A M M Elshaier Y; T M Nemr M; R A Abdellatif K
    Bioorg Chem; 2023 May; 134():106428. PubMed ID: 36893546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel tetrazole-based selective COX-2 inhibitors: Design, synthesis, anti-inflammatory activity, evaluation of PGE
    Labib MB; Fayez AM; El-Nahass ES; Awadallah M; Halim PA
    Bioorg Chem; 2020 Nov; 104():104308. PubMed ID: 33011534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and biological evaluation of pyridazinone derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents.
    Ahmed EM; Kassab AE; El-Malah AA; Hassan MSA
    Eur J Med Chem; 2019 Jun; 171():25-37. PubMed ID: 30904755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of new 2-(3-(naphthalen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole derivatives with potential analgesic and anti-inflammatory activities: In vitro, in vivo and in silico investigations.
    Mohammed ER; Abd-El-Fatah AH; Mohamed AR; Mahrouse MA; Mohammad MA
    Bioorg Chem; 2024 Jun; 147():107372. PubMed ID: 38653152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New 1,2,4-triazole/pyrazole hybrids linked to oxime moiety as nitric oxide donor celecoxib analogs: Synthesis, cyclooxygenase inhibition anti-inflammatory, ulcerogenicity, anti-proliferative activities, apoptosis, molecular modeling and nitric oxide release studies.
    Fadaly WAA; Elshaier YAMM; Hassanein EHM; Abdellatif KRA
    Bioorg Chem; 2020 May; 98():103752. PubMed ID: 32197148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities.
    Ahmed AHH; Mohamed MFA; Allam RM; Nafady A; Mohamed SK; Gouda AE; Beshr EAM
    Bioorg Chem; 2022 Dec; 129():106171. PubMed ID: 36166898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular design, synthesis and biological evaluation of cyclic imides bearing benzenesulfonamide fragment as potential COX-2 inhibitors. Part 2.
    Al-Suwaidan IA; Alanazi AM; El-Azab AS; Al-Obaid AM; ElTahir KE; Maarouf AR; Abu El-Enin MA; Abdel-Aziz AA
    Bioorg Med Chem Lett; 2013 May; 23(9):2601-5. PubMed ID: 23528298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New pyridazine derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents; design, synthesis and biological evaluation.
    Ahmed EM; Hassan MSA; El-Malah AA; Kassab AE
    Bioorg Chem; 2020 Jan; 95():103497. PubMed ID: 31838289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective cyclooxygenase inhibition and ulcerogenic liability of some newly prepared anti-inflammatory agents having thiazolo[4,5-d]pyrimidine scaffold.
    Bakr RB; Ghoneim AA; Azouz AA
    Bioorg Chem; 2019 Jul; 88():102964. PubMed ID: 31075742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New indomethacin analogs as selective COX-2 inhibitors: Synthesis, COX-1/2 inhibitory activity, anti-inflammatory, ulcerogenicity, histopathological, and docking studies.
    Abdellatif KRA; Abdelall EKA; Elshemy HAH; El-Nahass ES; Abdel-Fattah MM; Abdelgawad YYM
    Arch Pharm (Weinheim); 2021 Apr; 354(4):e2000328. PubMed ID: 33314237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on celecoxib scaffold supported with in vivo anti-inflammatory activity, ulcerogenic liability, ADME profiling and docking study.
    Abdellatif KRA; Abdelall EKA; Elshemy HAH; Philoppes JN; Hassanein EHM; Kahk NM
    Bioorg Chem; 2022 Mar; 120():105627. PubMed ID: 35065465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored quinoline hybrids as promising COX-2/15-LOX dual inhibitors endowed with diverse safety profile: Design, synthesis, SAR, and histopathological study.
    Hegazy ME; Taher ES; Ghiaty AH; Bayoumi AH
    Bioorg Chem; 2024 Apr; 145():107244. PubMed ID: 38428284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Ferrocene Compounds as Selective Cyclooxygenase (COX-2) Inhibitors: Design, Synthesis, Cytotoxicity and Enzyme-inhibitory Activity.
    Farzaneh S; Zeinalzadeh E; Daraei B; Shahhosseini S; Zarghi A
    Anticancer Agents Med Chem; 2018; 18(2):295-301. PubMed ID: 28971779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Hydroxybenzofuranyl-pyrazolyl and Hydroxyphenyl-pyrazolyl Chalcones and Their Corresponding Pyrazoline Derivatives as COX Inhibitors, Anti-inflammatory and Gastroprotective Agents.
    Ragab FAE; Mohammed EI; Abdel Jaleel GA; Selim AAMAE; Nissan YM
    Chem Pharm Bull (Tokyo); 2020; 68(8):742-752. PubMed ID: 32741915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trimethoxyphenyl containing compounds: Synthesis, biological evaluation, nitric oxide release, modeling, histochemical and histopathological studies.
    Abdelall EKA; Lamie PF; Aboelnaga LS; Hassan RM
    Bioorg Chem; 2022 Jul; 124():105806. PubMed ID: 35436752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel class of benzimidazole-thiazole hybrids: The privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes.
    Maghraby MT; Abou-Ghadir OMF; Abdel-Moty SG; Ali AY; Salem OIA
    Bioorg Med Chem; 2020 Apr; 28(7):115403. PubMed ID: 32127262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Novel Pyridazine-Based Cyclooxygenase-2 Inhibitors with a Promising Gastric Safety Profile.
    Khan A; Diwan A; Thabet HK; Imran M; Bakht MA
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32344801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, Synthesis, Molecular docking, and biological evaluation of novel 2,3-diaryl-1,3-thiazolidine-4-one derivatives as potential anti-inflammatory and cytotoxic agents.
    Mekhlef YO; AboulMagd AM; Gouda AM
    Bioorg Chem; 2023 Apr; 133():106411. PubMed ID: 36801792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study.
    Lamie PF; Philoppes JN; Azouz AA; Safwat NM
    J Enzyme Inhib Med Chem; 2017 Dec; 32(1):805-820. PubMed ID: 28587532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.