These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36191503)

  • 41. Enzymatic saccharification of brown seaweed for production of fermentable sugars.
    Sharma S; Horn SJ
    Bioresour Technol; 2016 Aug; 213():155-161. PubMed ID: 26961713
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica.
    Li SY; Wang ZP; Wang LN; Peng JX; Wang YN; Han YT; Zhao SF
    Bioresour Technol; 2019 Jun; 281():84-89. PubMed ID: 30802819
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production.
    Yazdani P; Zamani A; Karimi K; Taherzadeh MJ
    Bioresour Technol; 2015 Jan; 176():196-202. PubMed ID: 25461003
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isolation of a novel alginate lyase-producing Bacillus litoralis strain and its potential to ferment Sargassum horneri for biofertilizer.
    Wang M; Chen L; Liu Z; Zhang Z; Qin S; Yan P
    Microbiologyopen; 2016 Dec; 5(6):1038-1049. PubMed ID: 27440453
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Co-production of biodiesel and alginate from Laminaria japonica.
    Kim GY; Seo YH; Kim I; Han JI
    Sci Total Environ; 2019 Jul; 673():750-755. PubMed ID: 31003102
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Invasive biomass algae valorization: Assessment of the viability of Sargassum seaweed as pozzolanic material.
    Bilba K; Onésippe Potiron C; Arsène MA
    J Environ Manage; 2023 Sep; 342():118056. PubMed ID: 37224657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A close-loop integrated approach for microalgae cultivation and efficient utilization of agar-free seaweed residues for enhanced biofuel recovery.
    Abomohra AE; Almutairi AW
    Bioresour Technol; 2020 Dec; 317():124027. PubMed ID: 32829118
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of biodiesel from carbon sources of macroalgae, Laminaria japonica.
    Xu X; Kim JY; Oh YR; Park JM
    Bioresour Technol; 2014 Oct; 169():455-461. PubMed ID: 25084043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enzymatic saccharification of seaweeds into fermentable sugars by xylanase from marine
    Parab P; Khandeparker R; Amberkar U; Khodse V
    3 Biotech; 2017 Oct; 7(5):296. PubMed ID: 28868223
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An anomalous bi-macroalgal bloom caused by Ulva and Sargassum seaweeds during spring to summer of 2017 in the western Yellow Sea, China.
    Xiao J; Wang Z; Song H; Fan S; Yuan C; Fu M; Miao X; Zhang X; Su R; Hu C
    Harmful Algae; 2020 Mar; 93():101760. PubMed ID: 32307078
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol.
    Takagi T; Sasaki Y; Motone K; Shibata T; Tanaka R; Miyake H; Mori T; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6627-6636. PubMed ID: 28741083
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering
    Park S; Cho SW; Lee Y; Choi M; Yang J; Lee H; Seo SW
    Comput Struct Biotechnol J; 2021; 19():1531-1540. PubMed ID: 33815690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Valorization of Sargassum muticum Biomass According to the Biorefinery Concept.
    Balboa EM; Moure A; Domínguez H
    Mar Drugs; 2015 Jun; 13(6):3745-60. PubMed ID: 26110896
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microwave hydrothermal processing of the invasive macroalgae Sargassum muticum within a green biorefinery scheme.
    Del Río PG; Gullón B; Pérez-Pérez A; Romaní A; Garrote G
    Bioresour Technol; 2021 Nov; 340():125733. PubMed ID: 34426234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Macroalgal biomass as a potential resource for lactic acid fermentation.
    Nagarajan D; Chen CY; Ariyadasa TU; Lee DJ; Chang JS
    Chemosphere; 2022 Dec; 309(Pt 2):136694. PubMed ID: 36206920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metal selectivity of Sargassum spp. and their alginates in relation to their alpha-L-guluronic acid content and conformation.
    Davis TA; Llanes F; Volesky B; Mucci A
    Environ Sci Technol; 2003 Jan; 37(2):261-7. PubMed ID: 12564896
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous design and economic analysis of a Sargassum muticum biorefinery process.
    Caxiano IN; Mello PA; Alijó PHR; Teixeira LV; Cano RF; Maia JGSS; Bastos JBV; Pavão MSG
    Bioresour Technol; 2022 Jan; 343():126152. PubMed ID: 34699961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent trends on seaweed fractionation for liquid biofuels production.
    Del Río PG; Gomes-Dias JS; Rocha CMR; Romaní A; Garrote G; Domingues L
    Bioresour Technol; 2020 Mar; 299():122613. PubMed ID: 31870706
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities.
    van Tussenbroek BI; Hernández Arana HA; Rodríguez-Martínez RE; Espinoza-Avalos J; Canizales-Flores HM; González-Godoy CE; Barba-Santos MG; Vega-Zepeda A; Collado-Vides L
    Mar Pollut Bull; 2017 Sep; 122(1-2):272-281. PubMed ID: 28651862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.