These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36191583)

  • 1. Determination of the nanoscale electrical properties of olfactory receptor hOR1A1 and their dependence on ligand binding: Towards the development of capacitance-operated odorant biosensors.
    Lagunas A; Belloir C; Briand L; Gorostiza P; Samitier J
    Biosens Bioelectron; 2022 Dec; 218():114755. PubMed ID: 36191583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect odorant receptor-based biosensors: Current status and prospects.
    Cheema JA; Carraher C; Plank NOV; Travas-Sejdic J; Kralicek A
    Biotechnol Adv; 2021 Dec; 53():107840. PubMed ID: 34606949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants.
    Khadka R; Aydemir N; Carraher C; Hamiaux C; Colbert D; Cheema J; Malmström J; Kralicek A; Travas-Sejdic J
    Biosens Bioelectron; 2019 Feb; 126():207-213. PubMed ID: 30415156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Emergence of Insect Odorant Receptor-Based Biosensors.
    Bohbot JD; Vernick S
    Biosensors (Basel); 2020 Mar; 10(3):. PubMed ID: 32192133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical vapor detection using a reconstituted insect olfactory receptor complex.
    Sato K; Takeuchi S
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11798-802. PubMed ID: 25070609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein- and Peptide-Based Biosensors in Artificial Olfaction.
    Barbosa AJM; Oliveira AR; Roque ACA
    Trends Biotechnol; 2018 Dec; 36(12):1244-1258. PubMed ID: 30213453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive olfactory biosensors for the detection of volatile organic compounds by surface plasmon resonance imaging.
    Hurot C; Brenet S; Buhot A; Barou E; Belloir C; Briand L; Hou Y
    Biosens Bioelectron; 2019 Jan; 123():230-236. PubMed ID: 30201334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic Olfactory Sensor Based on A. mellifera Odorant-Binding Protein 14 on a Reduced Graphene Oxide Field-Effect Transistor.
    Larisika M; Kotlowski C; Steininger C; Mastrogiacomo R; Pelosi P; Schütz S; Peteu SF; Kleber C; Reiner-Rozman C; Nowak C; Knoll W
    Angew Chem Int Ed Engl; 2015 Nov; 54(45):13245-8. PubMed ID: 26364873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of odorant-binding proteins: a factor influencing the sensitivity of olfactory receptor-based biosensors.
    Ko HJ; Lee SH; Oh EH; Park TH
    Bioprocess Biosyst Eng; 2010 Jan; 33(1):55-62. PubMed ID: 19572152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the Production of Olfactory Receptors for Industrial Use.
    Cho S; Park TH
    Adv Biol (Weinh); 2023 Apr; 7(4):e2200251. PubMed ID: 36593488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance spectroscopy analysis of human odorant binding proteins immobilized on nanopore arrays for biochemical detection.
    Lu Y; Zhang D; Zhang Q; Huang Y; Luo S; Yao Y; Li S; Liu Q
    Biosens Bioelectron; 2016 May; 79():251-7. PubMed ID: 26710343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of cellular olfactory signal by electrical stimulation.
    Lee SH; Jeong SH; Jun SB; Kim SJ; Park TH
    Electrophoresis; 2009 Sep; 30(18):3283-8. PubMed ID: 19722204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose.
    Vidic JM; Grosclaude J; Persuy MA; Aioun J; Salesse R; Pajot-Augy E
    Lab Chip; 2006 Aug; 6(8):1026-32. PubMed ID: 16874373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site.
    Katada S; Hirokawa T; Oka Y; Suwa M; Touhara K
    J Neurosci; 2005 Feb; 25(7):1806-15. PubMed ID: 15716417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a Biohybrid Odorant Sensor Using Biological Olfactory Receptors Embedded into Bilayer Lipid Membrane on a Chip.
    Misawa N; Fujii S; Kamiya K; Osaki T; Takaku T; Takahashi Y; Takeuchi S
    ACS Sens; 2019 Mar; 4(3):711-716. PubMed ID: 30829476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila melanogaster odorant receptors as volatile compound detectors in forensic science: a proof-of-concept study.
    Leitch O; Lennard C; Paul Kirkbride K; Anderson A
    Anal Bioanal Chem; 2018 Nov; 410(29):7739-7747. PubMed ID: 30280229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles.
    Baud O; Yuan S; Veya L; Filipek S; Vogel H; Pick H
    Sci Rep; 2015 Oct; 5():14948. PubMed ID: 26449412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships.
    Persuy MA; Sanz G; Tromelin A; Thomas-Danguin T; Gibrat JF; Pajot-Augy E
    Prog Mol Biol Transl Sci; 2015; 130():1-36. PubMed ID: 25623335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odorant Binding Causes Cytoskeletal Rearrangement, Leading to Detectable Changes in Endothelial and Epithelial Barrier Function and Micromotion.
    Curtis TM; Nilon AM; Greenberg AJ; Besner M; Scibek JJ; Nichols JA; Huie JL
    Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979541
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.