BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36192132)

  • 1. iSnoDi-LSGT: identifying snoRNA-disease associations based on local similarity constraints and global topological constraints.
    Zhang W; Liu B
    RNA; 2022 Dec; 28(12):1558-1567. PubMed ID: 36192132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iSnoDi-MDRF: Identifying snoRNA-Disease Associations Based on Multiple Biological Data by Ranking Framework.
    Zhang W; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3013-3019. PubMed ID: 37030816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IGCNSDA: unraveling disease-associated snoRNAs with an interpretable graph convolutional network.
    Hu X; Zhang P; Liu D; Zhang J; Zhang Y; Dong Y; Fan Y; Deng L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38647155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning.
    Zhang L; Chen M; Hu X; Deng L
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PSnoD: identifying potential snoRNA-disease associations based on bounded nuclear norm regularization.
    Sun Z; Huang Q; Yang Y; Li S; Lv H; Zhang Y; Lin H; Ning L
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35817303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana.
    Qu G; Kruszka K; Plewka P; Yang SY; Chiou TJ; Jarmolowski A; Szweykowska-Kulinska Z; Echeverria M; Karlowski WM
    BMC Genomics; 2015 Nov; 16():1009. PubMed ID: 26607788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of human snoRNA core promoters.
    Li T; Zhou X; Wang X; Zhu D; Zhang Y
    Genomics; 2010 Jul; 96(1):50-6. PubMed ID: 20353816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human miRNA precursors with box H/ACA snoRNA features.
    Scott MS; Avolio F; Ono M; Lamond AI; Barton GJ
    PLoS Comput Biol; 2009 Sep; 5(9):e1000507. PubMed ID: 19763159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SnoReport 2.0: new features and a refined Support Vector Machine to improve snoRNA identification.
    de Araujo Oliveira JV; Costa F; Backofen R; Stadler PF; Machado Telles Walter ME; Hertel J
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):464. PubMed ID: 28105919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic curation and analysis of genomic variations and their potential functional consequences in snoRNA loci.
    Bhartiya D; Talwar J; Hasija Y; Scaria V
    Hum Mutat; 2012 Oct; 33(10):E2367-74. PubMed ID: 22778062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic distribution of plant snoRNA families.
    Patra Bhattacharya D; Canzler S; Kehr S; Hertel J; Grosse I; Stadler PF
    BMC Genomics; 2016 Nov; 17(1):969. PubMed ID: 27881081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. snOPY: a small nucleolar RNA orthological gene database.
    Yoshihama M; Nakao A; Kenmochi N
    BMC Res Notes; 2013 Oct; 6():426. PubMed ID: 24148649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative structure analysis of vertebrate U17 small nucleolar RNA (snoRNA).
    Cervelli M; Cecconi F; Giorgi M; Annesi F; Oliverio M; Mariottini P
    J Mol Evol; 2002 Feb; 54(2):166-79. PubMed ID: 11821910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAGESDA: Multi-GraphSAGE networks for predicting SnoRNA-disease associations.
    Momanyi BM; Zhou YW; Grace-Mercure BK; Temesgen SA; Basharat A; Ning L; Tang L; Gao H; Lin H; Tang H
    Curr Res Struct Biol; 2024; 7():100122. PubMed ID: 38188542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Annotation of snoRNA abundance across human tissues reveals complex snoRNA-host gene relationships.
    Fafard-Couture É; Bergeron D; Couture S; Abou-Elela S; Scott MS
    Genome Biol; 2021 Jun; 22(1):172. PubMed ID: 34088344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining small RNA sequencing data: a new approach to identify small nucleolar RNAs in Arabidopsis.
    Chen HM; Wu SH
    Nucleic Acids Res; 2009 May; 37(9):e69. PubMed ID: 19357091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic associations and regulation of expression indicate an independent role for 14q32 snoRNAs in human cardiovascular disease.
    Håkansson KEJ; Goossens EAC; Trompet S; van Ingen E; de Vries MR; van der Kwast RVCT; Ripa RS; Kastrup J; Hohensinner PJ; Kaun C; Wojta J; Böhringer S; Le Cessie S; Jukema JW; Quax PHA; Nossent AY
    Cardiovasc Res; 2019 Aug; 115(10):1519-1532. PubMed ID: 30544252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small nucleolar RNA and its potential role in breast cancer - A comprehensive review.
    Dsouza VL; Adiga D; Sriharikrishnaa S; Suresh PS; Chatterjee A; Kabekkodu SP
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188501. PubMed ID: 33400969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic identification and characterization of porcine snoRNAs: structural, functional and developmental insights.
    Liu N; Xiao B; Ren HY; Tang ZL; Li K
    Anim Genet; 2013 Feb; 44(1):24-33. PubMed ID: 22908878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combined computational and experimental analysis of two families of snoRNA genes from Caenorhabditis elegans, revealing the expression and evolution pattern of snoRNAs in nematodes.
    Huang ZP; Chen CJ; Zhou H; Li BB; Qu LH
    Genomics; 2007 Apr; 89(4):490-501. PubMed ID: 17222528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.