These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 36192397)
1. De novo design of immunoglobulin-like domains. Chidyausiku TM; Mendes SR; Klima JC; Nadal M; Eckhard U; Roel-Touris J; Houliston S; Guevara T; Haddox HK; Moyer A; Arrowsmith CH; Gomis-Rüth FX; Baker D; Marcos E Nat Commun; 2022 Oct; 13(1):5661. PubMed ID: 36192397 [TBL] [Abstract][Full Text] [Related]
2. Single-chain dimers from de novo immunoglobulins as robust scaffolds for multiple binding loops. Roel-Touris J; Nadal M; Marcos E Nat Commun; 2023 Sep; 14(1):5939. PubMed ID: 37741853 [TBL] [Abstract][Full Text] [Related]
3. The structural landscape of the immunoglobulin fold by large-scale de novo design. Roel-Touris J; Carcelén L; Marcos E Protein Sci; 2024 Apr; 33(4):e4936. PubMed ID: 38501461 [TBL] [Abstract][Full Text] [Related]
4. Adaption of human antibody λ and κ light chain architectures to CDR repertoires. van der Kant R; Bauer J; Karow-Zwick AR; Kube S; Garidel P; Blech M; Rousseau F; Schymkowitz J Protein Eng Des Sel; 2019 Dec; 32(3):109-127. PubMed ID: 31535139 [TBL] [Abstract][Full Text] [Related]
5. A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Decanniere K; Desmyter A; Lauwereys M; Ghahroudi MA; Muyldermans S; Wyns L Structure; 1999 Apr; 7(4):361-70. PubMed ID: 10196124 [TBL] [Abstract][Full Text] [Related]
6. Fully Human VH Single Domains That Rival the Stability and Cleft Recognition of Camelid Antibodies. Rouet R; Dudgeon K; Christie M; Langley D; Christ D J Biol Chem; 2015 May; 290(19):11905-17. PubMed ID: 25737448 [TBL] [Abstract][Full Text] [Related]
7. X-ray structures of the antigen-binding domains from three variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling. Eigenbrot C; Randal M; Presta L; Carter P; Kossiakoff AA J Mol Biol; 1993 Feb; 229(4):969-95. PubMed ID: 8095303 [TBL] [Abstract][Full Text] [Related]
8. Energy-based analysis and prediction of the orientation between light- and heavy-chain antibody variable domains. Narayanan A; Sellers BD; Jacobson MP J Mol Biol; 2009 May; 388(5):941-53. PubMed ID: 19324053 [TBL] [Abstract][Full Text] [Related]
10. The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops. Tsuchiya Y; Mizuguchi K Protein Sci; 2016 Apr; 25(4):815-25. PubMed ID: 26749247 [TBL] [Abstract][Full Text] [Related]
11. De novo design of antibody complementarity determining regions binding a FLAG tetra-peptide. Entzminger KC; Hyun JM; Pantazes RJ; Patterson-Orazem AC; Qerqez AN; Frye ZP; Hughes RA; Ellington AD; Lieberman RL; Maranas CD; Maynard JA Sci Rep; 2017 Aug; 7(1):10295. PubMed ID: 28860479 [TBL] [Abstract][Full Text] [Related]
12. Aligning, analyzing, and visualizing sequences for antibody engineering: Automated recognition of immunoglobulin variable region features. Jarasch A; Skerra A Proteins; 2017 Jan; 85(1):65-71. PubMed ID: 27770557 [TBL] [Abstract][Full Text] [Related]
13. Expression of an exogenous peptide epitope genetically engineered in the variable domain of an immunoglobulin: implications for antibody and peptide folding. Sollazzo M; Billetta R; Zanetti M Protein Eng; 1990 Dec; 4(2):215-20. PubMed ID: 1706095 [TBL] [Abstract][Full Text] [Related]
14. RosettaAntibodyDesign (RAbD): A general framework for computational antibody design. Adolf-Bryfogle J; Kalyuzhniy O; Kubitz M; Weitzner BD; Hu X; Adachi Y; Schief WR; Dunbrack RL PLoS Comput Biol; 2018 Apr; 14(4):e1006112. PubMed ID: 29702641 [TBL] [Abstract][Full Text] [Related]
15. "Superhumanized" antibodies: reduction of immunogenic potential by complementarity-determining region grafting with human germline sequences: application to an anti-CD28. Tan P; Mitchell DA; Buss TN; Holmes MA; Anasetti C; Foote J J Immunol; 2002 Jul; 169(2):1119-25. PubMed ID: 12097421 [TBL] [Abstract][Full Text] [Related]
16. Automated antibody structure prediction using Accelrys tools: results and best practices. Fasnacht M; Butenhof K; Goupil-Lamy A; Hernandez-Guzman F; Huang H; Yan L Proteins; 2014 Aug; 82(8):1583-98. PubMed ID: 24833271 [TBL] [Abstract][Full Text] [Related]
17. Ab initio structure prediction of the antibody hypervariable H3 loop. Zhu K; Day T Proteins; 2013 Jun; 81(6):1081-9. PubMed ID: 23255066 [TBL] [Abstract][Full Text] [Related]
18. Towards a structural and functional analysis of the immunoglobulin-fold proteome. Tawfeeq C; Song J; Khaniya U; Madej T; Wang J; Youkharibache P; Abrol R Adv Protein Chem Struct Biol; 2024; 138():135-178. PubMed ID: 38220423 [TBL] [Abstract][Full Text] [Related]
19. Conformations of the third hypervariable region in the VH domain of immunoglobulins. Morea V; Tramontano A; Rustici M; Chothia C; Lesk AM J Mol Biol; 1998 Jan; 275(2):269-94. PubMed ID: 9466909 [TBL] [Abstract][Full Text] [Related]
20. Hiding in plain sight: structure and sequence analysis reveals the importance of the antibody DE loop for antibody-antigen binding. Kelow SP; Adolf-Bryfogle J; Dunbrack RL MAbs; 2020; 12(1):1840005. PubMed ID: 33180672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]