These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 36192713)

  • 1. Prediction of successful aging using ensemble machine learning algorithms.
    Asghari Varzaneh Z; Shanbehzadeh M; Kazemi-Arpanahi H
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):258. PubMed ID: 36192713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Which are best for successful aging prediction? Bagging, boosting, or simple machine learning algorithms?
    Mirzaeian R; Nopour R; Asghari Varzaneh Z; Shafiee M; Shanbehzadeh M; Kazemi-Arpanahi H
    Biomed Eng Online; 2023 Aug; 22(1):85. PubMed ID: 37644599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using an adaptive network-based fuzzy inference system for prediction of successful aging: a comparison with common machine learning algorithms.
    Yazdani A; Shanbehzadeh M; Kazemi-Arpanahi H
    BMC Med Inform Decis Mak; 2023 Oct; 23(1):229. PubMed ID: 37858200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features.
    Qi H; Song X; Liu S; Zhang Y; Wong KKL
    Comput Methods Programs Biomed; 2023 Apr; 231():107378. PubMed ID: 36731312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms.
    Aldhyani THH; Alshebami AS; Alzahrani MY
    J Healthc Eng; 2020; 2020():4984967. PubMed ID: 32211144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning applications for the prediction of surgical site infection in neurological operations.
    Tunthanathip T; Sae-Heng S; Oearsakul T; Sakarunchai I; Kaewborisutsakul A; Taweesomboonyat C
    Neurosurg Focus; 2019 Aug; 47(2):E7. PubMed ID: 31370028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding Activity Prediction of Cyclin-Dependent Inhibitors.
    Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D
    J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents.
    Wani MA; Roy KK
    Mol Divers; 2022 Jun; 26(3):1345-1356. PubMed ID: 34110578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing a prediction model for successful aging among the elderly using machine learning algorithms.
    Ahmadi M; Nopour R; Nasiri S
    Digit Health; 2023; 9():20552076231178425. PubMed ID: 37284015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Chronic Kidney Disease Using Hybrid Machine Learning Based on Apache Spark.
    Abdel-Fattah MA; Othman NA; Goher N
    Comput Intell Neurosci; 2022; 2022():9898831. PubMed ID: 35251161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Match Results of Five Successful Football Clubs With Ensemble Learning Algorithms.
    Filiz E
    Res Q Exerc Sport; 2023 Sep; 94(3):773-782. PubMed ID: 35499540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empowering child health: Harnessing machine learning to predict acute respiratory infections in Ethiopian under-fives using demographic and health survey insights.
    Kalayou MH; Kassaw AK; Shiferaw KB
    BMC Infect Dis; 2024 Mar; 24(1):338. PubMed ID: 38515014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying machine learning methods to develop a successful aging maintenance prediction model based on physical fitness tests.
    Cai T; Long J; Kuang J; You F; Zou T; Wu L
    Geriatr Gerontol Int; 2020 Jun; 20(6):637-642. PubMed ID: 32358851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and internal validation of a machine-learning-developed model for predicting 1-year mortality after fragility hip fracture.
    Kitcharanant N; Chotiyarnwong P; Tanphiriyakun T; Vanitcharoenkul E; Mahaisavariya C; Boonyaprapa W; Unnanuntana A
    BMC Geriatr; 2022 May; 22(1):451. PubMed ID: 35610589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.
    Zhang Y; Ma Y
    Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical Decision Support System for Diabetic Patients by Predicting Type 2 Diabetes Using Machine Learning Algorithms.
    Islam R; Sultana A; Tuhin MN; Saikat MSH; Islam MR
    J Healthc Eng; 2023; 2023():6992441. PubMed ID: 37287539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing machine learning algorithms to predict subject genetic mutation class from in silico models of neuronal networks.
    Kress GT; Chan F; Garcia CA; Merrifield WS
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):290. PubMed ID: 36352381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters.
    Peng K; Tang Z; Dong L; Sun D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer Classification with a Cost-Sensitive Naive Bayes Stacking Ensemble.
    Xiong Y; Ye M; Wu C
    Comput Math Methods Med; 2021; 2021():5556992. PubMed ID: 33986823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.