These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36192747)

  • 1. VHHs as tools for therapeutic protein delivery to the central nervous system.
    Wouters Y; Jaspers T; Rué L; Serneels L; De Strooper B; Dewilde M
    Fluids Barriers CNS; 2022 Oct; 19(1):79. PubMed ID: 36192747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of single domain anti-transferrin receptor antibodies for blood-brain barrier transcytosis using a neurotensin based assay and histological assessment of target engagement in a mouse model of Alzheimer's related amyloid-beta pathology.
    Su S; Esparza TJ; Brody DL
    PLoS One; 2022; 17(10):e0276107. PubMed ID: 36256604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Human/Non-Human Primate Cross-Reactive Anti-Transferrin Receptor Nanobodies for Brain Delivery of Biologics.
    Rué L; Jaspers T; Degors IMS; Noppen S; Schols D; De Strooper B; Dewilde M
    Pharmaceutics; 2023 Jun; 15(6):. PubMed ID: 37376196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical PKPD and safety model of bispecific TfR/BACE1 antibodies for the optimization of antibody uptake in brain.
    Gadkar K; Yadav DB; Zuchero JY; Couch JA; Kanodia J; Kenrick MK; Atwal JK; Dennis MS; Prabhu S; Watts RJ; Joseph SB; Ramanujan S
    Eur J Pharm Biopharm; 2016 Apr; 101():53-61. PubMed ID: 26820920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates.
    Yu YJ; Atwal JK; Zhang Y; Tong RK; Wildsmith KR; Tan C; Bien-Ly N; Hersom M; Maloney JA; Meilandt WJ; Bumbaca D; Gadkar K; Hoyte K; Luk W; Lu Y; Ernst JA; Scearce-Levie K; Couch JA; Dennis MS; Watts RJ
    Sci Transl Med; 2014 Nov; 6(261):261ra154. PubMed ID: 25378646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and in vivo characterization of a brain-penetrating nanobody.
    Wouters Y; Jaspers T; De Strooper B; Dewilde M
    Fluids Barriers CNS; 2020 Oct; 17(1):62. PubMed ID: 33054787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single domain antibody-scFv conjugate targeting amyloid β and TfR penetrates the blood-brain barrier and interacts with amyloid β.
    Faresjö R; Sjöström EO; Dallas T; Berglund MM; Eriksson J; Sehlin D; Syvänen S
    MAbs; 2024; 16(1):2410968. PubMed ID: 39358860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys.
    Kariolis MS; Wells RC; Getz JA; Kwan W; Mahon CS; Tong R; Kim DJ; Srivastava A; Bedard C; Henne KR; Giese T; Assimon VA; Chen X; Zhang Y; Solanoy H; Jenkins K; Sanchez PE; Kane L; Miyamoto T; Chew KS; Pizzo ME; Liang N; Calvert MEK; DeVos SL; Baskaran S; Hall S; Sweeney ZK; Thorne RG; Watts RJ; Dennis MS; Silverman AP; Zuchero YJY
    Sci Transl Med; 2020 May; 12(545):. PubMed ID: 32461332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AAV-mediated delivery of an anti-BACE1 VHH alleviates pathology in an Alzheimer's disease model.
    Marino M; Zhou L; Rincon MY; Callaerts-Vegh Z; Verhaert J; Wahis J; Creemers E; Yshii L; Wierda K; Saito T; Marneffe C; Voytyuk I; Wouters Y; Dewilde M; Duqué SI; Vincke C; Levites Y; Golde TE; Saido TC; Muyldermans S; Liston A; De Strooper B; Holt MG
    EMBO Mol Med; 2022 Apr; 14(4):e09824. PubMed ID: 35352880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants.
    Bien-Ly N; Yu YJ; Bumbaca D; Elstrott J; Boswell CA; Zhang Y; Luk W; Lu Y; Dennis MS; Weimer RM; Chung I; Watts RJ
    J Exp Med; 2014 Feb; 211(2):233-44. PubMed ID: 24470444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced translational PBPK model for transferrin receptor-mediated drug delivery to the brain.
    Sato S; Liu S; Goto A; Yoneyama T; Okita K; Yamamoto S; Hirabayashi H; Iwasaki S; Kusuhara H
    J Control Release; 2023 May; 357():379-393. PubMed ID: 37031741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced in vivo blood brain barrier transcytosis of macromolecular cargo using an engineered pH-sensitive mouse transferrin receptor binding nanobody.
    Esparza TJ; Su S; Francescutti CM; Rodionova E; Kim JH; Brody DL
    Fluids Barriers CNS; 2023 Aug; 20(1):64. PubMed ID: 37620930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target.
    Yu YJ; Zhang Y; Kenrick M; Hoyte K; Luk W; Lu Y; Atwal J; Elliott JM; Prabhu S; Watts RJ; Dennis MS
    Sci Transl Med; 2011 May; 3(84):84ra44. PubMed ID: 21613623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Camelid heavy chain only antibody fragment domain against β-site of amyloid precursor protein cleaving enzyme 1 inhibits β-secretase activity in vitro and in vivo.
    Dorresteijn B; Rotman M; Faber D; Schravesande R; Suidgeest E; van der Weerd L; van der Maarel SM; Verrips CT; El Khattabi M
    FEBS J; 2015 Sep; 282(18):3618-31. PubMed ID: 26147692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake.
    Rotman M; Welling MM; van den Boogaard ML; Moursel LG; van der Graaf LM; van Buchem MA; van der Maarel SM; van der Weerd L
    Nucl Med Biol; 2015 Aug; 42(8):695-702. PubMed ID: 25960433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive and receptor mediated brain delivery of an anti-GFAP nanobody.
    Meier SR; Sehlin D; Syvänen S
    Nucl Med Biol; 2022; 114-115():121-127. PubMed ID: 35487832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the transcytosis of an anti-transferrin receptor antibody with a Fab' cargo across the blood-brain barrier in mice.
    Manich G; Cabezón I; del Valle J; Duran-Vilaregut J; Camins A; Pallàs M; Pelegrí C; Vilaplana J
    Eur J Pharm Sci; 2013 Jul; 49(4):556-64. PubMed ID: 23748097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospective Design of Anti-Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the Human Brain.
    Kanodia JS; Gadkar K; Bumbaca D; Zhang Y; Tong RK; Luk W; Hoyte K; Lu Y; Wildsmith KR; Couch JA; Watts RJ; Dennis MS; Ernst JA; Scearce-Levie K; Atwal JK; Ramanujan S; Joseph S
    CPT Pharmacometrics Syst Pharmacol; 2016 May; 5(5):283-91. PubMed ID: 27299941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Perfused In Vitro Human iPSC-Derived Blood-Brain Barrier Faithfully Mimics Transferrin Receptor-Mediated Transcytosis of Therapeutic Antibodies.
    Burgio F; Gaiser C; Brady K; Gatta V; Class R; Schrage R; Suter-Dick L
    Cell Mol Neurobiol; 2023 Nov; 43(8):4173-4187. PubMed ID: 37698826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging.
    Li T; Bourgeois JP; Celli S; Glacial F; Le Sourd AM; Mecheri S; Weksler B; Romero I; Couraud PO; Rougeon F; Lafaye P
    FASEB J; 2012 Oct; 26(10):3969-79. PubMed ID: 22730440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.