These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36192889)

  • 1. Formation of biofilm changed the responses of Tetragenococcus halophilus to ethanol stress revealed by transcriptomic and proteomic analyses.
    Yao S; Zhou R; Jin Y; Huang J; Qin J; Wu C
    Food Res Int; 2022 Nov; 161():111817. PubMed ID: 36192889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of the viability of Tetragenococcus halophilus under acidic stress by forming the biofilm cell structure based on RNA-Seq and iTRAQ analyses.
    Yao S; Tu R; Jin Y; Zhou R; Wu C; Qin J
    J Sci Food Agric; 2024 Apr; 104(6):3559-3569. PubMed ID: 38147410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Biofilm by
    Yao S; Hao L; Zhou R; Jin Y; Huang J; Wu C
    Front Microbiol; 2022; 13():819302. PubMed ID: 35300476
    [No Abstract]   [Full Text] [Related]  

  • 4. The molecular mechanism and post-transcriptional regulation characteristic of Tetragenococcus halophilus acclimation to osmotic stress revealed by quantitative proteomics.
    Lin J; Liang H; Yan J; Luo L
    J Proteomics; 2017 Sep; 168():1-14. PubMed ID: 28843533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-culture with Tetragenococcus halophilus improved the ethanol tolerance of Zygosaccharomyces rouxii by maintaining cell surface properties.
    Yao S; Hao L; Zhou R; Jin Y; Huang J; Wu C
    Food Microbiol; 2021 Aug; 97():103750. PubMed ID: 33653523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses.
    Chun BH; Han DM; Kim KH; Jeong SE; Park D; Jeon CO
    Food Microbiol; 2019 Oct; 83():36-47. PubMed ID: 31202417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of co-culture with Tetragenococcus halophilus on the physiological characterization and transcription profiling of Zygosaccharomyces rouxii.
    Yao S; Zhou R; Jin Y; Huang J; Wu C
    Food Res Int; 2019 Jul; 121():348-358. PubMed ID: 31108757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat Adaptation Induced Cross Protection Against Ethanol Stress in
    Yang H; Yao S; Zhang M; Wu C
    Front Microbiol; 2021; 12():686672. PubMed ID: 34220775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell surface properties and transcriptomic analysis of cross protection provided between heat adaptation and acid stress in Tetragenococcus halophilus.
    Yang H; Zhang L; Li J; Jin Y; Zou J; Huang J; Zhou R; Huang M; Wu C
    Food Res Int; 2021 Feb; 140():110005. PubMed ID: 33648238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptomic analysis reveals novel genes and regulatory mechanisms of Tetragenococcus halophilus in response to salt stress.
    Liu L; Si L; Meng X; Luo L
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):601-16. PubMed ID: 25563971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of DinJ-YafQ toxin-antitoxin module in Tetragenococcus halophilus: activity, interplay, and evolution.
    Luo X; Lin J; Yan J; Kuang X; Su H; Lin W; Luo L
    Appl Microbiol Biotechnol; 2021 May; 105(9):3659-3672. PubMed ID: 33877415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature stress improved exopolysaccharide yield from Tetragenococcus halophilus: Structural differences and underlying mechanisms revealed by transcriptomic analysis.
    Zhang M; Hong M; Wang Z; Jiao X; Wu C
    Bioresour Technol; 2023 Dec; 390():129863. PubMed ID: 37839647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Tetragenococcus halophilus SNTH-8.
    Yang X; Wu J; An F; Xu J; Bat-Ochir M; Wei L; Li M; Bilige M; Wu R
    Int J Biol Macromol; 2022 May; 208():288-298. PubMed ID: 35248612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Exogenous Proline on Metabolic Response of Tetragenococcus halophilus under Salt Stress.
    He G; Wu C; Hunag J; Zhou R
    J Microbiol Biotechnol; 2017 Sep; 27(9):1681-1691. PubMed ID: 28683533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One Step Forward with Dry Surface Biofilm (DSB) of
    Rahman MA; Amirkhani A; Parvin F; Chowdhury D; Molloy MP; Deva AK; Vickery K; Hu H
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety assessment of Tetragenococcus halophilus isolates from doenjang, a Korean high-salt-fermented soybean paste.
    Jeong DW; Heo S; Lee JH
    Food Microbiol; 2017 Apr; 62():92-98. PubMed ID: 27889172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the two nonidentical ArgR regulators of Tetragenococcus halophilus and their regulatory effects on arginine metabolism.
    Lin J; Luo X; Gänzle MG; Luo L
    Appl Microbiol Biotechnol; 2020 Oct; 104(20):8775-8787. PubMed ID: 32880693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic profiling reveals differences in the adaptation of two Tetragenococcus halophilus strains to a lupine moromi model medium.
    Link T; Ehrmann MA
    BMC Microbiol; 2023 Jan; 23(1):14. PubMed ID: 36639757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective extracellular secretion of small double-stranded RNA by Tetragenococcus halophilus.
    Imrat ; Labala RK; Behara AK; Jeyaram K
    Funct Integr Genomics; 2022 Dec; 23(1):10. PubMed ID: 36542169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic insights into the non-histamine production and proteolytic and lipolytic activities of Tetragenococcus halophilus KUD23.
    Lee JH; Heo S; Jeong K; Lee B; Jeong DW
    FEMS Microbiol Lett; 2018 Jan; 365(1):. PubMed ID: 29211887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.