BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36192989)

  • 1. Ascorbic acid-loaded gliadin nanoparticles as a novel nutraceutical formulation.
    Voci S; Gagliardi A; Fresta M; Cosco D
    Food Res Int; 2022 Nov; 161():111869. PubMed ID: 36192989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of polyoxyethylene (2) oleyl ether-gliadin nanoparticles: Characterization and in vitro cytotoxicity.
    Voci S; Gagliardi A; Salvatici MC; Fresta M; Cosco D
    Eur J Pharm Sci; 2021 Jul; 162():105849. PubMed ID: 33857638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution.
    Jang KI; Lee HG
    J Agric Food Chem; 2008 Mar; 56(6):1936-41. PubMed ID: 18284198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-tocopherol encapsulation and in vitro release from wheat gliadin nanoparticles.
    Duclairoir C; Orecchioni AM; Depraetere P; Nakache E
    J Microencapsul; 2002; 19(1):53-60. PubMed ID: 11811759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sodium tripolyphosphate incorporation on physical, structural, morphological and stability characteristics of zein and gliadin nanoparticles.
    Yang S; Dai L; Mao L; Liu J; Yuan F; Li Z; Gao Y
    Int J Biol Macromol; 2019 Sep; 136():653-660. PubMed ID: 31195045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gliadin Nanoparticles Containing Doxorubicin Hydrochloride: Characterization and Cytotoxicity.
    Voci S; Gagliardi A; Ambrosio N; Salvatici MC; Fresta M; Cosco D
    Pharmaceutics; 2023 Jan; 15(1):. PubMed ID: 36678809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the Dispersion Medium and Cryoprotectants on the Physico-Chemical Features of Gliadin- and Zein-Based Nanoparticles.
    Voci S; Gagliardi A; Salvatici MC; Fresta M; Cosco D
    Pharmaceutics; 2022 Jan; 14(2):. PubMed ID: 35214063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of curcumin in soluble soybean polysaccharide-coated gliadin nanoparticles: interaction, stability, antioxidant capacity, and bioaccessibility.
    Guo S; Zhao Y; Luo S; Mu D; Li X; Zhong X; Jiang S; Zheng Z
    J Sci Food Agric; 2022 Sep; 102(12):5121-5131. PubMed ID: 35275410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheat α-gliadin and high-molecular-weight glutenin subunit accumulate in different storage compartments of transgenic soybean seed.
    Matsuoka Y; Yamada T; Maruyama N
    Transgenic Res; 2022 Feb; 31(1):43-58. PubMed ID: 34427836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gliadin Nanoparticles Pickering Emulgels for β-Carotene Delivery: Effect of Particle Concentration on the Stability and Bioaccessibility.
    Cheng C; Gao Y; Wu Z; Miao J; Gao H; Ma L; Zou L; Peng S; Liu C; Liu W
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32932691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant-Based Nanoparticles Prepared from Proteins and Phospholipids Consisting of a Core-Multilayer-Shell Structure: Fabrication, Stability, and Foamability.
    Chen X; Chen Y; Zou L; Zhang X; Dong Y; Tang J; McClements DJ; Liu W
    J Agric Food Chem; 2019 Jun; 67(23):6574-6584. PubMed ID: 31117503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidized Chitin Nanocrystals Greatly Strengthen the Stability of Resveratrol-Loaded Gliadin Nanoparticles.
    Zhong W; Zhi Z; Zhao J; Li D; Yu S; Duan M; Xu J; Tong C; Pang J; Wu C
    J Agric Food Chem; 2022 Oct; 70(42):13778-13786. PubMed ID: 36196864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The γ-gliadin-like γ-prolamin genes in the tribe Triticeae.
    Qi PF; Le CX; Wang Z; Liu YB; Chen Q; Wei ZZ; Xu BJ; Wei ZY; Dai SF; Wei YM; Zheng YL
    J Genet; 2014 Apr; 93(1):35-41. PubMed ID: 24840821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gliadin nanoparticles for oral administration of bioactives: Ex vivo and in vivo investigations.
    Voci S; Pangua C; Martínez-Ohárriz MC; Aranaz P; Collantes M; Irache JM; Cosco D
    Int J Biol Macromol; 2023 Sep; 249():126111. PubMed ID: 37541472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of a solid-in-oil nanosuspension containing L-ascorbic acid as a novel long-term stable topical formulation.
    Piao H; Kamiya N; Cui F; Goto M
    Int J Pharm; 2011 Nov; 420(1):156-60. PubMed ID: 21878376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of gliadin, secalin and hordein fractions using analytical techniques.
    Rani M; Sogi DS; Gill BS
    Sci Rep; 2021 Nov; 11(1):23135. PubMed ID: 34848764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of physicochemical, molecular dynamics, and in vitro evaluation of electrosprayed γ-oryzanol-loaded gliadin nanoparticles.
    Sharif N; Golmakani MT; Hajjari MM
    Food Chem; 2022 Nov; 395():133589. PubMed ID: 35779508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins.
    Joye IJ; Davidov-Pardo G; Ludescher RD; McClements DJ
    Food Chem; 2015 Oct; 185():261-7. PubMed ID: 25952867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles of Waste Material of Propolis and Gelatin as a Novel System for Delivery of L-Ascorbic Acid.
    Belloto de Francisco LM; Carrer Costa YT; Outuki PM; Souza RP; de Souza Bonfim Mendonca P; Novello CR; Lopes Consolaro ME; Bruschi ML
    Curr Drug Deliv; 2017; 14(7):1028-1039. PubMed ID: 27067407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive immunosensor based on gliadin immobilization on disposable carbon-nanogold screen-printed electrodes for rapid determination of celiotoxic prolamins.
    Manfredi A; Giannetto M; Mattarozzi M; Costantini M; Mucchino C; Careri M
    Anal Bioanal Chem; 2016 Oct; 408(26):7289-98. PubMed ID: 27023219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.