BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 36193597)

  • 21. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics.
    Bhat AA; Nisar S; Mukherjee S; Saha N; Yarravarapu N; Lone SN; Masoodi T; Chauhan R; Maacha S; Bagga P; Dhawan P; Akil AA; El-Rifai W; Uddin S; Reddy R; Singh M; Macha MA; Haris M
    J Transl Med; 2022 Nov; 20(1):534. PubMed ID: 36401282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering T Cells Using CRISPR/Cas9 for Cancer Therapy.
    Zhang X; Cheng C; Sun W; Wang H
    Methods Mol Biol; 2020; 2115():419-433. PubMed ID: 32006414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence.
    Wei W; Chen ZN; Wang K
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Therapeutic gene editing in haematological disorders with CRISPR/Cas9.
    Jensen TI; Axelgaard E; Bak RO
    Br J Haematol; 2019 Jun; 185(5):821-835. PubMed ID: 30864164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies.
    Razeghian E; Nasution MKM; Rahman HS; Gardanova ZR; Abdelbasset WK; Aravindhan S; Bokov DO; Suksatan W; Nakhaei P; Shariatzadeh S; Marofi F; Yazdanifar M; Shamlou S; Motavalli R; Khiavi FM
    Stem Cell Res Ther; 2021 Jul; 12(1):428. PubMed ID: 34321099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells.
    Glaser V; Flugel C; Kath J; Du W; Drosdek V; Franke C; Stein M; Pruß A; Schmueck-Henneresse M; Volk HD; Reinke P; Wagner DL
    Genome Biol; 2023 Apr; 24(1):89. PubMed ID: 37095570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Challenges of CRISPR-Based Gene Editing in Primary T Cells.
    Rezalotfi A; Fritz L; Förster R; Bošnjak B
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool.
    Shojaei Baghini S; Gardanova ZR; Abadi SAH; Zaman BA; İlhan A; Shomali N; Adili A; Moghaddar R; Yaseri AF
    Cell Mol Biol Lett; 2022 May; 27(1):35. PubMed ID: 35508982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GMP-manufactured CRISPR/Cas9 technology as an advantageous tool to support cancer immunotherapy.
    Caforio M; Iacovelli S; Quintarelli C; Locatelli F; Folgiero V
    J Exp Clin Cancer Res; 2024 Mar; 43(1):66. PubMed ID: 38424590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas9 as a Tool in Cancer Therapy.
    Zatloukalová P; Krejčíř R; Valík D; Vojtěšek B
    Klin Onkol; 2019; 32(Supplementum 3):13-18. PubMed ID: 31627701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revolutionizing cancer treatment: enhancing CAR-T cell therapy with CRISPR/Cas9 gene editing technology.
    Tao R; Han X; Bai X; Yu J; Ma Y; Chen W; Zhang D; Li Z
    Front Immunol; 2024; 15():1354825. PubMed ID: 38449862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia.
    Hu Y; Zhou Y; Zhang M; Ge W; Li Y; Yang L; Wei G; Han L; Wang H; Yu S; Chen Y; Wang Y; He X; Zhang X; Gao M; Yang J; Li X; Ren J; Huang H
    Clin Cancer Res; 2021 May; 27(10):2764-2772. PubMed ID: 33627493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review: Sustainable Clinical Development of CAR-T Cells - Switching From Viral Transduction Towards CRISPR-Cas Gene Editing.
    Wagner DL; Koehl U; Chmielewski M; Scheid C; Stripecke R
    Front Immunol; 2022; 13():865424. PubMed ID: 35784280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitigation of chromosome loss in clinical CRISPR-Cas9-engineered T cells.
    Tsuchida CA; Brandes N; Bueno R; Trinidad M; Mazumder T; Yu B; Hwang B; Chang C; Liu J; Sun Y; Hopkins CR; Parker KR; Qi Y; Hofman L; Satpathy AT; Stadtmauer EA; Cate JHD; Eyquem J; Fraietta JA; June CH; Chang HY; Ye CJ; Doudna JA
    Cell; 2023 Oct; 186(21):4567-4582.e20. PubMed ID: 37794590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells.
    Morgan MA; Büning H; Sauer M; Schambach A
    Front Immunol; 2020; 11():1965. PubMed ID: 32903482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-Based Approaches for Cancer Immunotherapy.
    Malla RR; Middela K
    Crit Rev Oncog; 2023; 28(4):1-14. PubMed ID: 38050977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
    Ghaemi A; Bagheri E; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    Life Sci; 2021 Feb; 267():118969. PubMed ID: 33385410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition.
    Ren J; Liu X; Fang C; Jiang S; June CH; Zhao Y
    Clin Cancer Res; 2017 May; 23(9):2255-2266. PubMed ID: 27815355
    [No Abstract]   [Full Text] [Related]  

  • 39. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells.
    Hu B; Zou Y; Zhang L; Tang J; Niedermann G; Firat E; Huang X; Zhu X
    Hum Gene Ther; 2019 Apr; 30(4):446-458. PubMed ID: 29706119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunotherapy to get on point with base editing.
    Harbottle JA
    Drug Discov Today; 2021 Oct; 26(10):2350-2357. PubMed ID: 33857616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.