These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36193776)

  • 21. Abnormal Ionic-Current Rectification Caused by Reversed Electroosmotic Flow under Viscosity Gradients across Thin Nanopores.
    Qiu Y; Siwy ZS; Wanunu M
    Anal Chem; 2019 Jan; 91(1):996-1004. PubMed ID: 30516369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electric control of ionic transport in sub-nm nanopores.
    Ji A; Chen Y
    RSC Adv; 2021 Apr; 11(23):13806-13813. PubMed ID: 35423930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores.
    Hou CH; Taboada-Serrano P; Yiacoumi S; Tsouris C
    J Chem Phys; 2008 Dec; 129(22):224703. PubMed ID: 19071935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osmotic Pressure and Diffusion of Ions in Charged Nanopores.
    Apel P; Bondarenko M; Yamauchi Y; Yaroshchuk A
    Langmuir; 2021 Dec; 37(48):14089-14095. PubMed ID: 34821504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Label-free DNA detection using the narrow side of funnel-type etched nanopores.
    Mandabi Y; Fink D; Alfonta L
    Biosens Bioelectron; 2013 Apr; 42():362-6. PubMed ID: 23208111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation.
    Balme S; Picaud F; Manghi M; Palmeri J; Bechelany M; Cabello-Aguilar S; Abou-Chaaya A; Miele P; Balanzat E; Janot JM
    Sci Rep; 2015 Jun; 5():10135. PubMed ID: 26036687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational microscopy of the role of protonable surface residues in nanoprecipitation oscillations.
    Cruz-Chu ER; Schulten K
    ACS Nano; 2010 Aug; 4(8):4463-74. PubMed ID: 20597534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic correlations on the ionic selectivity of cylindrical membrane nanopores.
    Buyukdagli S; Ala-Nissila T
    J Chem Phys; 2014 Feb; 140(6):064701. PubMed ID: 24527931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large apparent electric size of solid-state nanopores due to spatially extended surface conduction.
    Lee C; Joly L; Siria A; Biance AL; Fulcrand R; Bocquet L
    Nano Lett; 2012 Aug; 12(8):4037-44. PubMed ID: 22746297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method.
    Datta S; Conlisk AT; Kanani DM; Zydney AL; Fissell WH; Roy S
    J Colloid Interface Sci; 2010 Aug; 348(1):85-95. PubMed ID: 20462592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetric diffusion through synthetic nanopores.
    Siwy Z; Kosińska ID; Fuliński A; Martin CR
    Phys Rev Lett; 2005 Feb; 94(4):048102. PubMed ID: 15783605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ionic exclusion phase transition in neutral and weakly charged cylindrical nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    J Chem Phys; 2011 Feb; 134(7):074706. PubMed ID: 21341868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Permeability and electrokinetic characterization of poly(ethylene terephthalate) capillary pore membranes with grafted temperature-responsive polymers.
    Geismann C; Yaroshchuk A; Ulbricht M
    Langmuir; 2007 Jan; 23(1):76-83. PubMed ID: 17190488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of charge regulation and flow slip in the ionic conductance of nanopores: An analytical approach.
    Manghi M; Palmeri J; Yazda K; Henn F; Jourdain V
    Phys Rev E; 2018 Jul; 98(1-1):012605. PubMed ID: 30110733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioconjugation-induced ionic current rectification in aptamer-modified single cylindrical nanopores.
    Ali M; Nasir S; Ensinger W
    Chem Commun (Camb); 2015 Feb; 51(16):3454-7. PubMed ID: 25627437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silicon Nitride Nanopores Formed by Simple Chemical Etching: DNA Translocations and TEM Imaging.
    Xia Z; Scott A; Keneipp R; Chen J; Niedzwiecki DJ; DiPaolo B; Drndić M
    ACS Nano; 2022 Nov; 16(11):18648-18657. PubMed ID: 36251751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Layer-by-layer modification effects on a nanopore's inner surface of polycarbonate track-etched membranes.
    Paoli R; Bulwan M; Castaño O; Engel E; Rodriguez-Cabello JC; Homs-Corbera A; Samitier J
    RSC Adv; 2020 Sep; 10(59):35930-35940. PubMed ID: 35517089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.