These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure-activity relationship with a strong BBB permeability. Jannat S; Balupuri A; Ali MY; Hong SS; Choi CW; Choi YH; Ku JM; Kim WJ; Leem JY; Kim JE; Shrestha AC; Ham HN; Lee KH; Kim DM; Kang NS; Park GH Exp Mol Med; 2019 Feb; 51(2):1-18. PubMed ID: 30755593 [TBL] [Abstract][Full Text] [Related]
6. Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives. Orhan IE; Jedrejek D; Senol FS; Salmas RE; Durdagi S; Kowalska I; Pecio L; Oleszek W Phytomedicine; 2018 Mar; 42():25-33. PubMed ID: 29655693 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of novel phosphorothioates and phosphorodithioates and their differential inhibition of cholinesterases. Kaboudin B; Emadi S; Hadizadeh A Bioorg Chem; 2009 Aug; 37(4):101-5. PubMed ID: 19481235 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Rosenberry TL; Brazzolotto X; Macdonald IR; Wandhammer M; Trovaslet-Leroy M; Darvesh S; Nachon F Molecules; 2017 Nov; 22(12):. PubMed ID: 29186056 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and cholinesterase inhibitory activity study of new piperidone grafted spiropyrrolidines. Basiri A; Abd Razik BM; Ezzat MO; Kia Y; Kumar RS; Almansour AI; Arumugam N; Murugaiyah V Bioorg Chem; 2017 Dec; 75():210-216. PubMed ID: 28987876 [TBL] [Abstract][Full Text] [Related]
10. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies. Mughal EU; Sadiq A; Ashraf J; Zafar MN; Sumrra SH; Tariq R; Mumtaz A; Javid A; Khan BA; Ali A; Javed CO Bioorg Chem; 2019 Oct; 91():103124. PubMed ID: 31319297 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, Characterization and Cholinesterase Inhibition Studies of New Arylidene Aminothiazolylethanone Derivatives. Channar PA; Shah MS; Saeed A; Khan SU; Larik FA; Shabir G; Iqbal J Med Chem; 2017; 13(7):648-653. PubMed ID: 28266279 [TBL] [Abstract][Full Text] [Related]
12. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site. Hadda TB; Talhi O; Silva ASM; Senol FS; Orhan IE; Rauf A; Mabkhot YN; Bachari K; Warad I; Farghaly TA; Althagafi II; Mubarak MS Mini Rev Med Chem; 2018; 18(8):711-716. PubMed ID: 28714400 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of cholinesterases by safranin O: Integration of inhibition kinetics with molecular docking simulations. Onder S; Sari S; Tacal O Arch Biochem Biophys; 2021 Feb; 698():108728. PubMed ID: 33345803 [TBL] [Abstract][Full Text] [Related]
14. Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids. Castro MJ; Richmond V; Faraoni MB; Murray AP Bioorg Chem; 2018 Sep; 79():301-309. PubMed ID: 29793143 [TBL] [Abstract][Full Text] [Related]
15. Identification of New Chromenone Derivatives as Cholinesterase Inhibitors and Molecular Docking Studies. Iqbal J; Abbasi MSA; Zaib S; Afridi S; Furtmann N; Bajorath J; Langer P Med Chem; 2018; 14(8):809-817. PubMed ID: 29473519 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Acetylcholinesterase and Butyrylcholinesterase by a Plant Secondary Metabolite Boldine. Kostelnik A; Pohanka M Biomed Res Int; 2018; 2018():9634349. PubMed ID: 29850593 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors. Makhaeva GF; Boltneva NP; Lushchekina SV; Serebryakova OG; Stupina TS; Terentiev AA; Serkov IV; Proshin AN; Bachurin SO; Richardson RJ Bioorg Med Chem; 2016 Mar; 24(5):1050-62. PubMed ID: 26827140 [TBL] [Abstract][Full Text] [Related]
18. Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action. Bondžić AM; Senćanski MV; Vujačić Nikezić AV; Kirillova MV; André V; Kirillov AM; Bondžić BP J Inorg Biochem; 2020 Apr; 205():110990. PubMed ID: 32035286 [TBL] [Abstract][Full Text] [Related]
19. Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Saxena A; Redman AM; Jiang X; Lockridge O; Doctor BP Chem Biol Interact; 1999 May; 119-120():61-9. PubMed ID: 10421439 [TBL] [Abstract][Full Text] [Related]
20. Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations. Vitorović-Todorović MD; Koukoulitsa C; Juranić IO; Mandić LM; Drakulić BJ Eur J Med Chem; 2014 Jun; 81():158-75. PubMed ID: 24836068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]