These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36193959)

  • 21. Biocatalytic Pathway Selection in Transient Tripeptide Nanostructures.
    Pappas CG; Sasselli IR; Ulijn RV
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8119-23. PubMed ID: 26014441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model for the controlled assembly of semiconductor peptides.
    Kim SH; Parquette JR
    Nanoscale; 2012 Nov; 4(22):6940-7. PubMed ID: 23034819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and Investigation of Backbone Modified Squaramide Dipeptide Self-Assembly.
    Shinde SD; Kulkarni N; Sahu B
    ACS Appl Bio Mater; 2023 Feb; 6(2):507-518. PubMed ID: 36716238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features.
    Li F; Han J; Cao T; Lam W; Fan B; Tang W; Chen S; Fok KL; Li L
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11259-11264. PubMed ID: 31110004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures.
    Fu J; Liu M; Liu Y; Yan H
    Acc Chem Res; 2012 Aug; 45(8):1215-26. PubMed ID: 22642503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocatalytic self-assembly of nanostructured peptide microparticles using droplet microfluidics.
    Bai S; Debnath S; Gibson K; Schlicht B; Bayne L; Zagnoni M; Ulijn RV
    Small; 2014 Jan; 10(2):285-93. PubMed ID: 23913836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymer-Tethered Nanoparticles: From Surface Engineering to Directional Self-Assembly.
    Zhang NN; Shen X; Liu K; Nie Z; Kumacheva E
    Acc Chem Res; 2022 Jun; 55(11):1503-1513. PubMed ID: 35576169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly.
    Wang J; Liu K; Yan L; Wang A; Bai S; Yan X
    ACS Nano; 2016 Feb; 10(2):2138-43. PubMed ID: 26756339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material.
    Ko JW; Choi WS; Kim J; Kuk SK; Lee SH; Park CB
    Biomacromolecules; 2017 Nov; 18(11):3551-3556. PubMed ID: 28825470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable Chirality of Self-Assembled Dipeptides Mediated by Bipyridine Derivative.
    Wu A; Guo Y; Li M; Li Q; Zang H; Li J
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202314368. PubMed ID: 37938522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels.
    Marchesan S; Waddington L; Easton CD; Winkler DA; Goodall L; Forsythe J; Hartley PG
    Nanoscale; 2012 Nov; 4(21):6752-60. PubMed ID: 22955637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels.
    Orbach R; Adler-Abramovich L; Zigerson S; Mironi-Harpaz I; Seliktar D; Gazit E
    Biomacromolecules; 2009 Sep; 10(9):2646-51. PubMed ID: 19705843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using phosphatases to generate self-assembled nanostructures and their applications.
    Zhang J; Gao J; Chen M; Yang Z
    Antioxid Redox Signal; 2014 May; 20(14):2179-90. PubMed ID: 24180369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembly of 1-D n-type nanostructures based on naphthalene diimide-appended dipeptides.
    Shao H; Nguyen T; Romano NC; Modarelli DA; Parquette JR
    J Am Chem Soc; 2009 Nov; 131(45):16374-6. PubMed ID: 19852501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibroin-like Peptides Self-Assembling on Two-Dimensional Materials as a Molecular Scaffold for Potential Biosensing.
    Li P; Sakuma K; Tsuchiya S; Sun L; Hayamizu Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20670-20677. PubMed ID: 31066544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition.
    Chan KH; Xue B; Robinson RC; Hauser CAE
    Sci Rep; 2017 Oct; 7(1):12897. PubMed ID: 29018249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials.
    Chen Y; Tao K; Ji W; Makam P; Rencus-Lazar S; Gazit E
    Protein Pept Lett; 2020; 27(8):688-697. PubMed ID: 32048950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.