These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36193972)

  • 1. Dimension Engineering in Noble-Metal-Based Electrocatalysts for Water Splitting.
    Yang X; Ouyang Y; Guo R; Yao Z
    Chem Rec; 2023 Feb; 23(2):e202200212. PubMed ID: 36193972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in water-splitting electrocatalysis mediated by 2D noble metal materials.
    Tian L; Li Z; Song M; Li J
    Nanoscale; 2021 Jul; 13(28):12088-12101. PubMed ID: 34236371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering transition metal catalysts for large-current-density water splitting.
    Yang X; Guo R; Cai R; Shi W; Liu W; Guo J; Xiao J
    Dalton Trans; 2022 Mar; 51(12):4590-4607. PubMed ID: 35231082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Manganese-Based Materials for Electrolytic Water Splitting.
    Hu J; Zhou Y; Liu Y; Xu Z; Li H
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis.
    Yu J; Li Z; Wang C; Xu X; Liu T; Chen D; Shao Z; Ni M
    J Colloid Interface Sci; 2024 May; 661():629-661. PubMed ID: 38310771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts.
    Wu T; Dong C; Sun D; Huang F
    Nanoscale; 2021 Jan; 13(3):1581-1595. PubMed ID: 33444426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for Promoting Catalytic Performance of Ru-Based Electrocatalysts towards Oxygen/Hydrogen Evolution Reaction.
    Chu X; Wang L; Li J; Xu H
    Chem Rec; 2023 Apr; 23(4):e202300013. PubMed ID: 36806446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble Metal-Free Nanocatalysts with Vacancies for Electrochemical Water Splitting.
    Yang MQ; Wang J; Wu H; Ho GW
    Small; 2018 Apr; 14(15):e1703323. PubMed ID: 29356413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in fuel cell reaction electrocatalysis based on porous noble metal nanocatalysts.
    Cheng W; Sun L; He X; Tian L
    Dalton Trans; 2022 May; 51(20):7763-7774. PubMed ID: 35508098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Synthesis of Noble Metal-Based Alloy Electrocatalysts and Their Application in Hydrogen Evolution Reaction.
    Cui Z; Jiao W; Huang Z; Chen G; Zhang B; Han Y; Huang W
    Small; 2023 Aug; 19(35):e2301465. PubMed ID: 37186069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noble metal-free hydrogen evolution catalysts for water splitting.
    Zou X; Zhang Y
    Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting.
    Lee G; Jun SE; Kim Y; Park IH; Jang HW; Park SH; Kwon KC
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in noble-metal-free electrocatalysts for alkaline oxygen evolution reaction.
    Tan D; Xiong H; Zhang T; Fan X; Wang J; Xu F
    Front Chem; 2022; 10():1071274. PubMed ID: 36569965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-Deficient Cobalt-Based Oxides for Electrocatalytic Water Splitting.
    Badreldin A; Abusrafa AE; Abdel-Wahab A
    ChemSusChem; 2021 Jan; 14(1):10-32. PubMed ID: 33053253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in transition metal selenide electrocatalysts for water splitting.
    Xia X; Wang L; Sui N; Colvin VL; Yu WW
    Nanoscale; 2020 Jun; 12(23):12249-12262. PubMed ID: 32514508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Support and Interface Effects in Water-Splitting Electrocatalysts.
    Zhang J; Zhang Q; Feng X
    Adv Mater; 2019 Aug; 31(31):e1808167. PubMed ID: 30838688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance.
    Wang P; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling Transition Metal Catalysts with Ir for Enhanced Electrochemical Water Splitting Activity.
    Yang X; Liu Y; Guo R; Xiao J
    Chem Rec; 2022 Dec; 22(12):e202200176. PubMed ID: 36000851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.