These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36194060)

  • 21. Effective mitigation in the amount of acrylamide through enzymatic approaches.
    Abedi E; Mohammad Bagher Hashemi S; Ghiasi F
    Food Res Int; 2023 Oct; 172():113177. PubMed ID: 37689930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of high pressure-high temperature processing conditions on acrylamide formation and other Maillard reaction compounds.
    De Vleeschouwer K; Van der Plancken I; Van Loey A; Hendrickx ME
    J Agric Food Chem; 2010 Nov; 58(22):11740-8. PubMed ID: 20973553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review of methods for the reduction of dietary content and toxicity of acrylamide.
    Friedman M; Levin CE
    J Agric Food Chem; 2008 Aug; 56(15):6113-40. PubMed ID: 18624452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction in Dietary Acrylamide Exposure-Impact of Potatoes with Low Acrylamide Potential.
    Tran NL; Barraj LM; Collinge S
    Risk Anal; 2017 Sep; 37(9):1754-1767. PubMed ID: 27866376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae.
    Hendriksen HV; Kornbrust BA; Østergaard PR; Stringer MA
    J Agric Food Chem; 2009 May; 57(10):4168-76. PubMed ID: 19388639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient control of acrylamide in French fries by an extraordinarily active and thermo-stable l-asparaginase: A lab-scale study.
    Wang Y; Wu H; Zhang W; Xu W; Mu W
    Food Chem; 2021 Oct; 360():130046. PubMed ID: 34023713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of acrylamide formation: Maillard-induced transformation of asparagine.
    Blank I; Robert F; Goldmann T; Pollien P; Varga N; Devaud S; Saucy F; Huynh-Ba T; Stadler RH
    Adv Exp Med Biol; 2005; 561():171-89. PubMed ID: 16438298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acrylamide is formed in the Maillard reaction.
    Mottram DS; Wedzicha BL; Dodson AT
    Nature; 2002 Oct; 419(6906):448-9. PubMed ID: 12368844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of L-asparaginase on acrylamide mitigation in a fried-dough pastry model.
    Kukurová K; Morales FJ; Bednáriková A; Ciesarová Z
    Mol Nutr Food Res; 2009 Dec; 53(12):1532-9. PubMed ID: 19824015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries processing.
    Zuo S; Zhang T; Jiang B; Mu W
    Extremophiles; 2015 Jul; 19(4):841-51. PubMed ID: 26077968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production and Inhibition of Acrylamide during Coffee Processing: A Literature Review.
    Li Z; Zhao C; Cao C
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage.
    Oral RA; Dogan M; Sarioglu K
    Food Chem; 2014 Jan; 142():423-9. PubMed ID: 24001861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models.
    Qi Y; Zhang H; Wu G; Zhang H; Gu L; Wang L; Qian H; Qi X
    Food Chem; 2018 Jun; 250():98-104. PubMed ID: 29412934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic, physiological, and environmental factors affecting acrylamide concentration in fried potato products.
    Silva EM; Simon PW
    Adv Exp Med Biol; 2005; 561():371-86. PubMed ID: 16438312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of chitosan on the formation of acrylamide and hydroxymethylfurfural in model, biscuit and crust systems.
    Mogol BA; Gökmen V
    Food Funct; 2016 Aug; 7(8):3431-6. PubMed ID: 27406058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study of the use of sarcosine, proline and glycine as acrylamide inhibitors in ripe olive processing.
    Sánchez AH; Beato VM; López-López A; Montaño A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(2):242-9. PubMed ID: 24294998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acceleration effect of galacturonic acid on acrylamide generation: evidence in model reaction systems.
    Wang P; Sun G; Lu P; Zhu Y; Hu X; Chen F
    J Sci Food Agric; 2023 Jan; 103(1):361-369. PubMed ID: 35893577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New aspects on the formation and analysis of acrylamide.
    Schieberle P; Köhler P; Granvog M
    Adv Exp Med Biol; 2005; 561():205-22. PubMed ID: 16438300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Sulphur Response in Wheat Grain and Its Implications for Acrylamide Formation and Food Safety.
    Raffan S; Oddy J; Halford NG
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of galacturonic acid in acrylamide formation: Insights from structural analysis.
    Lin M; Sun G; Hu X; Chen F; Zhu Y
    Food Chem; 2024 Sep; 452():139282. PubMed ID: 38723562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.