BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36194197)

  • 1. Factors influencing neuromuscular responses to gait training with a robotic ankle exoskeleton in cerebral palsy.
    Conner BC; Spomer AM; Steele KM; Lerner ZF
    Assist Technol; 2023 Nov; 35(6):463-470. PubMed ID: 36194197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study.
    Fang Y; Orekhov G; Lerner ZF
    Gait Posture; 2022 Jun; 95():256-263. PubMed ID: 33248858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ankle exoskeleton assistance and plantar pressure biofeedback on incline walking mechanics and muscle activity in cerebral palsy.
    Fang Y; Lerner ZF
    J Biomech; 2024 Jan; 163():111944. PubMed ID: 38219555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Ankle Exoskeleton Assistance Affects the Mechanics of Incline Walking and Stair Ascent in Cerebral Palsy.
    Fang Y; Lerner ZF
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot evaluation of changes in motor control after wearable robotic resistance training in children with cerebral palsy.
    Conner BC; Schwartz MH; Lerner ZF
    J Biomech; 2021 Sep; 126():110601. PubMed ID: 34332214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation.
    Lerner ZF; Damiano DL; Bulea TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2214-2217. PubMed ID: 28324959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the Energy Cost of Incline Walking and Stair Ascent With Ankle Exoskeleton Assistance in Cerebral Palsy.
    Fang Y; Orekhov G; Lerner ZF
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2143-2152. PubMed ID: 34941495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does Ankle Exoskeleton Assistance Impair Stability During Walking in Individuals with Cerebral Palsy?
    Harvey TA; Conner BC; Lerner ZF
    Ann Biomed Eng; 2021 Sep; 49(9):2522-2532. PubMed ID: 34189633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle coordination and recruitment during squat assistance using a robotic ankle-foot exoskeleton.
    Jeong H; Haghighat P; Kantharaju P; Jacobson M; Jeong H; Kim M
    Sci Rep; 2023 Jan; 13(1):1363. PubMed ID: 36693935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of Augmenting Ankle Exoskeleton Walking Performance With Step Length Biofeedback in Individuals With Cerebral Palsy.
    Fang Y; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():442-449. PubMed ID: 33523814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary Validation of Proportional Myoelectric Control of A Commercially Available Robotic Ankle Exoskeleton.
    Hybart RL; Ferris DP
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-5. PubMed ID: 36176129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usability and performance validation of an ultra-lightweight and versatile untethered robotic ankle exoskeleton.
    Orekhov G; Fang Y; Cuddeback CF; Lerner ZF
    J Neuroeng Rehabil; 2021 Nov; 18(1):163. PubMed ID: 34758857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assistive Mobility Control of a Robotic Hip-Knee Exoskeleton for Gait Training.
    Changcheng C; Li YR; Chen CT
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.
    Lerner ZF; Damiano DL; Bulea TC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.
    Lerner ZF; Damiano DL; Park HS; Gravunder AJ; Bulea TC
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):650-659. PubMed ID: 27479974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking.
    Bianco NA; Collins SH; Liu K; Delp SL
    PLoS Comput Biol; 2023 Aug; 19(8):e1010712. PubMed ID: 37549183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.