These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36194197)

  • 21. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving Ankle Muscle Recruitment via Plantar Pressure Biofeedback during Robot Resisted Gait Training in Cerebral Palsy.
    Conner BC; Lerner ZF
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning to walk with a robotic ankle exoskeleton.
    Gordon KE; Ferris DP
    J Biomech; 2007; 40(12):2636-44. PubMed ID: 17275829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy.
    Conner BC; Luque J; Lerner ZF
    Ann Biomed Eng; 2020 Apr; 48(4):1309-1321. PubMed ID: 31950309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
    Rogozinski BM; Davids JR; Davis RB; Jameson GG; Blackhurst DW
    J Bone Joint Surg Am; 2009 Oct; 91(10):2440-7. PubMed ID: 19797580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy.
    Lerner ZF; Gasparri GM; Bair MO; Lawson JL; Luque J; Harvey TA; Lerner AT
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1985-1993. PubMed ID: 30235140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.
    Kao PC; Lewis CL; Ferris DP
    J Biomech; 2010 Jan; 43(2):203-9. PubMed ID: 19878952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A randomized cross-over study protocol to evaluate long-term gait training with a pediatric robotic exoskeleton outside the clinical setting in children with movement disorders.
    Devine TM; Alter KE; Damiano DL; Bulea TC
    PLoS One; 2024; 19(7):e0304087. PubMed ID: 38976710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking.
    Attias M; Bonnefoy-Mazure A; De Coulon G; Cheze L; Armand S
    Gait Posture; 2016 Oct; 50():239-245. PubMed ID: 27665088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy.
    Lerner ZF; Harvey TA; Lawson JL
    Ann Biomed Eng; 2019 Jun; 47(6):1345-1356. PubMed ID: 30825030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals With Cerebral Palsy.
    Orekhov G; Fang Y; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):461-467. PubMed ID: 31940542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy.
    Lerner ZF; Damiano DL; Bulea TC
    J Biomech; 2019 Apr; 87():142-149. PubMed ID: 30862380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.
    Gordon KE; Kinnaird CR; Ferris DP
    J Neurophysiol; 2013 Apr; 109(7):1804-14. PubMed ID: 23307949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gait variability of outdoor vs treadmill walking with bilateral robotic ankle exoskeletons under proportional myoelectric control.
    Hybart R; Ferris D
    PLoS One; 2023; 18(11):e0294241. PubMed ID: 37956157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repeatability of EMG activity during exoskeleton assisted walking in children with cerebral palsy: implications for real time adaptable control.
    Bulea TC; Lerner ZF; Damiano DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2801-2804. PubMed ID: 30440983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical Effects of Adding an Ankle Soft Actuation in a Unilateral Exoskeleton.
    Otálora S; Ballen-Moreno F; Arciniegas-Mayag L; Cifuentes CA; Múnera M
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validating Model-Based Prediction Of Biological Knee Moment During Walking With An Exoskeleton in Crouch Gait: Potential Application for Exoskeleton Control.
    Chen J; Damiano DL; Lerner ZF; Bulea TC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():778-783. PubMed ID: 31374725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robotic lower extremity exoskeleton use in a non-ambulatory child with cerebral palsy: a case study.
    Diot CM; Thomas RL; Raess L; Wrightson JG; Condliffe EG
    Disabil Rehabil Assist Technol; 2023 Jul; 18(5):497-501. PubMed ID: 33539714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy.
    Lerner ZF; Damiano DL; Bulea TC
    Sci Transl Med; 2017 Aug; 9(404):. PubMed ID: 28835518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.