BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 36194263)

  • 1. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A.
    Vera M; Schippers A; Hedrich S; Sand W
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):6933-6952. PubMed ID: 36194263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A.
    Vera M; Schippers A; Sand W
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7529-41. PubMed ID: 23720034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.
    Tao H; Dongwei L
    Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms.
    Bellenberg S; Buetti-Dinh A; Galli V; Ilie O; Herold M; Christel S; Boretska M; Pivkin IV; Wilmes P; Sand W; Vera M; Dopson M
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30076195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms.
    Jones S; Santini JM
    Essays Biochem; 2023 Aug; 67(4):685-699. PubMed ID: 37449416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation.
    Rohwerder T; Gehrke T; Kinzler K; Sand W
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):239-48. PubMed ID: 14566432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.
    Sand W; Gehrke T
    Res Microbiol; 2006; 157(1):49-56. PubMed ID: 16431087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans.
    González A; Bellenberg S; Mamani S; Ruiz L; Echeverría A; Soulère L; Doutheau A; Demergasso C; Sand W; Queneau Y; Vera M; Guiliani N
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3729-37. PubMed ID: 22752316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life in heaps: a review of microbial responses to variable acidity in sulfide mineral bioleaching heaps for metal extraction.
    Shiers DW; Collinson DM; Watling HR
    Res Microbiol; 2016 Sep; 167(7):576-86. PubMed ID: 27283362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Applications in Metal Bioleaching.
    Tanne CK; Schippers A
    Adv Biochem Eng Biotechnol; 2019; 167():327-359. PubMed ID: 29224081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms.
    Deng S; Gu G; Wu Z; Xu X
    Chemosphere; 2017 Oct; 185():403-411. PubMed ID: 28710989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-homogeneous biofilm modeling applied to bioleaching processes.
    Olivera-Nappa A; Picioreanu C; Asenjo JA
    Biotechnol Bioeng; 2010 Jul; 106(4):660-76. PubMed ID: 20229512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide.
    Li XT; Huang ZS; Huang Y; Jiang Z; Liang ZL; Yin HQ; Zhang GJ; Jia Y; Deng Y; Liu SJ; Jiang CY
    Sci Total Environ; 2023 Apr; 869():161752. PubMed ID: 36690115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans.
    Liljeqvist M; Rzhepishevska OI; Dopson M
    Appl Environ Microbiol; 2013 Feb; 79(3):951-7. PubMed ID: 23183980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pathway of the generation of acid mine drainage and release of arsenic in the bioleaching of orpiment.
    Shen C; Zhang G; Li K; Yang C
    Chemosphere; 2022 Jul; 298():134287. PubMed ID: 35283152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources.
    Chen P; Yan L; Leng F; Nan W; Yue X; Zheng Y; Feng N; Li H
    Bioresour Technol; 2011 Feb; 102(3):3260-7. PubMed ID: 21146407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource.
    Feng S; Yin Y; Yin Z; Zhang H; Zhu D; Tong Y; Yang H
    Environ Res; 2021 Mar; 194():110702. PubMed ID: 33400950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm Formation Is Crucial for Efficient Copper Bioleaching From Bornite Under Mesophilic Conditions: Unveiling the Lifestyle and Catalytic Role of Sulfur-Oxidizing Bacteria.
    Bobadilla-Fazzini RA; Poblete-Castro I
    Front Microbiol; 2021; 12():761997. PubMed ID: 34745072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature.
    Barahona S; Dorador C; Zhang R; Aguilar P; Sand W; Vera M; Remonsellez F
    Res Microbiol; 2014 Nov; 165(9):782-93. PubMed ID: 25111023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced "contact mechanism" for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus.
    Huang Z; Feng S; Tong Y; Yang H
    J Environ Manage; 2019 Jul; 242():11-21. PubMed ID: 31026798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.