These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36194264)
1. Improved site-specific mutagenesis in Rhodococcus opacus using a novel conditional suicide plasmid. Jain G; Ertesvåg H Appl Microbiol Biotechnol; 2022 Nov; 106(21):7129-7138. PubMed ID: 36194264 [TBL] [Abstract][Full Text] [Related]
2. A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of Liang Y; Wei Y; Jiao S; Yu H Synth Syst Biotechnol; 2021 Sep; 6(3):200-208. PubMed ID: 34430726 [TBL] [Abstract][Full Text] [Related]
3. Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids). Kalscheuer R; Arenskötter M; Steinbüchel A Appl Microbiol Biotechnol; 1999 Oct; 52(4):508-15. PubMed ID: 10570798 [TBL] [Abstract][Full Text] [Related]
4. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630. DeLorenzo DM; Rottinghaus AG; Henson WR; Moon TS ACS Synth Biol; 2018 Feb; 7(2):727-738. PubMed ID: 29366319 [TBL] [Abstract][Full Text] [Related]
6. Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains. Hetzler S; Bröker D; Steinbüchel A Appl Environ Microbiol; 2013 Sep; 79(17):5159-66. PubMed ID: 23793636 [TBL] [Abstract][Full Text] [Related]
7. The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Hernández MA; Arabolaza A; Rodríguez E; Gramajo H; Alvarez HM Appl Microbiol Biotechnol; 2013 Mar; 97(5):2119-30. PubMed ID: 22926642 [TBL] [Abstract][Full Text] [Related]
8. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Portevin D; De Sousa-D'Auria C; Houssin C; Grimaldi C; Chami M; Daffé M; Guilhot C Proc Natl Acad Sci U S A; 2004 Jan; 101(1):314-9. PubMed ID: 14695899 [TBL] [Abstract][Full Text] [Related]
9. A key Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939 [No Abstract] [Full Text] [Related]
10. Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the level of mycolic acids. de Carvalho CCCR; Fischer MA; Kirsten S; Würz B; Wick LY; Heipieper HJ AMB Express; 2016 Dec; 6(1):66. PubMed ID: 27620730 [TBL] [Abstract][Full Text] [Related]
11. Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Alvarez AF; Alvarez HM; Kalscheuer R; Wältermann M; Steinbüchel A Microbiology (Reading); 2008 Aug; 154(Pt 8):2327-2335. PubMed ID: 18667565 [TBL] [Abstract][Full Text] [Related]
13. Transfer of megaplasmid pKB1 from the rubber-degrading bacterium Gordonia westfalica strain Kb1 to related bacteria and its modification. Bröker D; Arenskötter M; Steinbüchel A Appl Microbiol Biotechnol; 2008 Jan; 77(6):1317-27. PubMed ID: 18034340 [TBL] [Abstract][Full Text] [Related]
14. The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins. Hänisch J; Wältermann M; Robenek H; Steinbüchel A Microbiology (Reading); 2006 Nov; 152(Pt 11):3271-3280. PubMed ID: 17074898 [TBL] [Abstract][Full Text] [Related]
15. Structural analysis of the 6 kb cryptic plasmid pFAJ2600 from Rhodococcus erythropolis NI86/21 and construction of Escherichia coli-Rhodococcus shuttle vectors. De Mot R; Nagy I; De Schrijver A; Pattanapipitpaisal P; Schoofs G; Vanderleyden J Microbiology (Reading); 1997 Oct; 143 ( Pt 10)():3137-3147. PubMed ID: 9353918 [TBL] [Abstract][Full Text] [Related]
16. Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Chen Y; Ding Y; Yang L; Yu J; Liu G; Wang X; Zhang S; Yu D; Song L; Zhang H; Zhang C; Huo L; Huo C; Wang Y; Du Y; Zhang H; Zhang P; Na H; Xu S; Zhu Y; Xie Z; He T; Zhang Y; Wang G; Fan Z; Yang F; Liu H; Wang X; Zhang X; Zhang MQ; Li Y; Steinbüchel A; Fujimoto T; Cichello S; Yu J; Liu P Nucleic Acids Res; 2014 Jan; 42(2):1052-64. PubMed ID: 24150943 [TBL] [Abstract][Full Text] [Related]
17. Comparative Genomics and Metabolic Analysis Reveals Peculiar Characteristics of Rhodococcus opacus Strain M213 Particularly for Naphthalene Degradation. Pathak A; Chauhan A; Blom J; Indest KJ; Jung CM; Stothard P; Bera G; Green SJ; Ogram A PLoS One; 2016; 11(8):e0161032. PubMed ID: 27532207 [TBL] [Abstract][Full Text] [Related]
18. Development of a genetic transformation system for benzene-tolerant Rhodococcus opacus strains. Na KS; Nagayasu K; Kuroda A; Takiguchi N; Ikeda T; Ohtake H; Kato J J Biosci Bioeng; 2005 Apr; 99(4):408-14. PubMed ID: 16233810 [TBL] [Abstract][Full Text] [Related]
19. Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases. Huang L; Zhao L; Zan X; Song Y; Ratledge C Biotechnol Lett; 2016 Jun; 38(6):999-1008. PubMed ID: 26956236 [TBL] [Abstract][Full Text] [Related]
20. The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. MacEachran DP; Prophete ME; Sinskey AJ Appl Environ Microbiol; 2010 Nov; 76(21):7217-25. PubMed ID: 20851968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]