These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 36194325)
1. Monitoring and analysis of desertification surrounding Qinghai Lake (China) using remote sensing big data. Zhou Y; Hu Z; Geng Q; Ma J; Liu J; Wang M; Wang Y Environ Sci Pollut Res Int; 2023 Feb; 30(7):17420-17436. PubMed ID: 36194325 [TBL] [Abstract][Full Text] [Related]
2. Land desertification monitoring and assessment in Yulin of Northwest China using remote sensing and geographic information systems (GIS). Zhang Y; Chen Z; Zhu B; Luo X; Guan Y; Guo S; Nie Y Environ Monit Assess; 2008 Dec; 147(1-3):327-37. PubMed ID: 18197462 [TBL] [Abstract][Full Text] [Related]
3. The dominant influencing factors of desertification and ecological risk changes in Qinghai Area of Qilian Mountains National Park: Climate change or human activity? Liu Z; Si J; Jia B; He X; Zhou D; Wang C; Zhu X; Qin J; Ndayambaza B; Bai X J Environ Manage; 2024 Jun; 362():121335. PubMed ID: 38833934 [TBL] [Abstract][Full Text] [Related]
4. [Ecological Environment Assessment and Driving Mechanism Analysis of Nagqu and Amdo Sections of Qinghai-Xizang Highway Based on Improved Remote Sensing Ecological Index]. Fu KX; Jia GD; Yu XX; Wang X Huan Jing Ke Xue; 2024 Mar; 45(3):1586-1597. PubMed ID: 38471872 [TBL] [Abstract][Full Text] [Related]
5. [Dynamics of desertification in the lower reaches of Shiyang River Basin, Northwest China during 1995-2018]. Wei W; Yu X; Zhang MZ; Zhang J; Yuan T; Liu CF Ying Yong Sheng Tai Xue Bao; 2021 Jun; 32(6):2098-2106. PubMed ID: 34212616 [TBL] [Abstract][Full Text] [Related]
6. Applying the change vector analysis technique to assess the desertification risk in the south-west of Romania in the period 1984-2011. Vorovencii I Environ Monit Assess; 2017 Sep; 189(10):524. PubMed ID: 28952041 [TBL] [Abstract][Full Text] [Related]
7. Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using Landsat images. Zhang CL; Li Q; Shen YP; Zhou N; Wang XS; Li J; Jia WR Sci Total Environ; 2018 Apr; 619-620():1648-1659. PubMed ID: 29061294 [TBL] [Abstract][Full Text] [Related]
8. [Dynamic monitoring and evaluation of ecological environment quality in Zhouqu County, Gansu, China based on Google Earth Engine cloud platform]. Yue YF; Chen GP; Wang L; Yang J; Yang KT Ying Yong Sheng Tai Xue Bao; 2022 Jun; 33(6):1608-1614. PubMed ID: 35729139 [TBL] [Abstract][Full Text] [Related]
9. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity? Guo B; Wei C; Yu Y; Liu Y; Li J; Meng C; Cai Y Sci Total Environ; 2022 Mar; 813():152512. PubMed ID: 34968592 [TBL] [Abstract][Full Text] [Related]
10. Quantitative assessment of desertification using landsat data on a regional scale - a case study in the ordos plateau, china. Xu D; Kang X; Qiu D; Zhuang D; Pan J Sensors (Basel); 2009; 9(3):1738-53. PubMed ID: 22573984 [TBL] [Abstract][Full Text] [Related]
11. [Application of Landsat ETM+ in monitoring of desertification in agro-pastoral ecotone of northern China]. Mi J; Wang K; Wang HM Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):798-802. PubMed ID: 21595243 [TBL] [Abstract][Full Text] [Related]
12. Analysis of Growing Season Normalized Difference Vegetation Index Variation and Its Influencing Factors on the Mongolian Plateau Based on Google Earth Engine. Yan Y; Xin Z; Bai X; Zhan H; Xi J; Xie J; Cheng Y Plants (Basel); 2023 Jul; 12(13):. PubMed ID: 37447111 [TBL] [Abstract][Full Text] [Related]
13. Spatiotemporal changes in desertified land in rare earth mining areas under different disturbance conditions. Li Y; Li H; Xu F Environ Sci Pollut Res Int; 2021 Jun; 28(23):30323-30334. PubMed ID: 33587273 [TBL] [Abstract][Full Text] [Related]
14. Desertification prediction with an integrated 3D convolutional neural network and cellular automata in Al-Muthanna, Iraq. Aldabbagh YAN; Shafri HZM; Mansor S; Ismail MH Environ Monit Assess; 2022 Oct; 194(10):715. PubMed ID: 36045231 [TBL] [Abstract][Full Text] [Related]
15. Impacts of Climate Change and Land Use/Cover Change on the Net Primary Productivity of Vegetation in the Qinghai Lake Basin. Zhang J; Qi Y; Yang R; Ma X; Zhang J; Qi W; Guo Q; Wang H Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767546 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal evolution and driving mechanisms of desertification on the Mongolian Plateau. Xu S; Wang J; Altansukh O; Chuluun T Sci Total Environ; 2024 Sep; 941():173566. PubMed ID: 38823694 [TBL] [Abstract][Full Text] [Related]
17. Effect of climate and ecological restoration on vegetation changes in the "Three-River Headwaters" region based on remote sensing technology. Guo B; Wang J; Mantravadi VS; Zhang L; Liu G Environ Sci Pollut Res Int; 2022 Mar; 29(11):16436-16448. PubMed ID: 34647216 [TBL] [Abstract][Full Text] [Related]
18. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau]. Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255 [TBL] [Abstract][Full Text] [Related]
19. Reconstruction and application of the temperature-vegetation-precipitation drought index in mainland China based on remote sensing datasets and a spatial distance model. Wei W; Zhang H; Ma L; Wang X; Guo Z; Xie B; Zhou J; Wang J J Environ Manage; 2022 Dec; 323():116208. PubMed ID: 36261977 [TBL] [Abstract][Full Text] [Related]
20. Historical changes in the major and trace elements in the sedimentary records of Lake Qinghai, Qinghai-Tibet Plateau: implications for anthropogenic activities. Wang Q; Sha Z; Wang J; Du J; Hu J; Ma Y Environ Geochem Health; 2019 Oct; 41(5):2093-2111. PubMed ID: 30843165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]