These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36194430)

  • 1. Predicting Experimental
    Shahfar H; O'Brien CJ; Budyak IL; Roberts CJ
    Mol Pharm; 2022 Nov; 19(11):3820-3830. PubMed ID: 36194430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Protein-Protein Interactions of Concentrated Antibody Solutions Using Dilute Solution Data and Coarse-Grained Molecular Models.
    Calero-Rubio C; Ghosh R; Saluja A; Roberts CJ
    J Pharm Sci; 2018 May; 107(5):1269-1281. PubMed ID: 29274822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Glycosylation on Protein-Protein Self-Interactions of Monoclonal Antibodies.
    Palakollu V; Motabar L; Roberts CJ
    Mol Pharm; 2024 Mar; 21(3):1414-1423. PubMed ID: 38386020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting High-Concentration Interactions of Monoclonal Antibody Solutions: Comparison of Theoretical Approaches for Strongly Attractive Versus Repulsive Conditions.
    Calero-Rubio C; Saluja A; Sahin E; Roberts CJ
    J Phys Chem B; 2019 Jul; 123(27):5709-5720. PubMed ID: 31241333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatically Mediated Protein-Protein Interactions for Monoclonal Antibodies: A Combined Experimental and Coarse-Grained Molecular Modeling Approach.
    Ferreira GM; Calero-Rubio C; Sathish HA; Remmele RL; Roberts CJ
    J Pharm Sci; 2019 Jan; 108(1):120-132. PubMed ID: 30419274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Interactions of Two Monoclonal Antibodies: Small-Angle X-ray Scattering, Light Scattering, and Coarse-Grained Modeling.
    Mahapatra S; Polimeni M; Gentiluomo L; Roessner D; Frieß W; Peters GHJ; Streicher WW; Lund M; Harris P
    Mol Pharm; 2022 Feb; 19(2):508-519. PubMed ID: 34939811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Protein Interactions of Concentrated Globular Protein Solutions Using Colloidal Models.
    Woldeyes MA; Calero-Rubio C; Furst EM; Roberts CJ
    J Phys Chem B; 2017 May; 121(18):4756-4767. PubMed ID: 28422503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical characterization and molecular simulation of electrostatically driven self-association of a single-chain antibody.
    O'Brien CJ; Calero-Rubio C; Razinkov VI; Robinson AS; Roberts CJ
    Protein Sci; 2018 Jul; 27(7):1275-1285. PubMed ID: 29637646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-Grained Antibody Models for "Weak" Protein-Protein Interactions from Low to High Concentrations.
    Calero-Rubio C; Saluja A; Roberts CJ
    J Phys Chem B; 2016 Jul; 120(27):6592-605. PubMed ID: 27314827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a Suite of Coarse-Grained Models for Molecular Simulation of Monoclonal Antibodies and Therapeutic Proteins.
    Shahfar H; Forder JK; Roberts CJ
    J Phys Chem B; 2021 Apr; 125(14):3574-3588. PubMed ID: 33821645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From osmotic second virial coefficient (B22 ) to phase behavior of a monoclonal antibody.
    Rakel N; Bauer KC; Galm L; Hubbuch J
    Biotechnol Prog; 2015; 31(2):438-51. PubMed ID: 25683855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies?
    Woldeyes MA; Qi W; Razinkov VI; Furst EM; Roberts CJ
    J Pharm Sci; 2019 Jan; 108(1):142-154. PubMed ID: 30017887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of electrostatics in protein-protein interactions of a monoclonal antibody.
    Roberts D; Keeling R; Tracka M; van der Walle CF; Uddin S; Warwicker J; Curtis R
    Mol Pharm; 2014 Jul; 11(7):2475-89. PubMed ID: 24892385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Relationship between Protein-Protein Interactions and Liquid-Liquid Phase Separation for Monoclonal Antibodies.
    Sibanda N; Shanmugam RK; Curtis R
    Mol Pharm; 2023 May; 20(5):2662-2674. PubMed ID: 37039349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Scattering Experiments and Colloid Theory to Characterize Charge Effects in Concentrated Antibody Solutions.
    Gulotta A; Polimeni M; Lenton S; Starr CG; Stradner A; Zaccarelli E; Schurtenberger P
    Mol Pharm; 2024 May; 21(5):2250-2271. PubMed ID: 38661388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Protein-Protein Interactions in a Mixture of Two Monoclonal Antibodies.
    Singh P; Roche A; van der Walle CF; Uddin S; Du J; Warwicker J; Pluen A; Curtis R
    Mol Pharm; 2019 Dec; 16(12):4775-4786. PubMed ID: 31613625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of net charge and protein-protein interactions of different monoclonal antibodies.
    Lehermayr C; Mahler HC; Mäder K; Fischer S
    J Pharm Sci; 2011 Jul; 100(7):2551-62. PubMed ID: 21294130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly viscous antibody solutions are a consequence of network formation caused by domain-domain electrostatic complementarities: insights from coarse-grained simulations.
    Buck PM; Chaudhri A; Kumar S; Singh SK
    Mol Pharm; 2015 Jan; 12(1):127-39. PubMed ID: 25383990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatically Mediated Attractive Self-Interactions and Reversible Self-Association of Fc-Fusion Proteins.
    Forder JK; Palakollu V; Adhikari S; Blanco MA; Derebe MG; Ferguson HM; Luthra SA; Munsell EV; Roberts CJ
    Mol Pharm; 2024 Mar; 21(3):1321-1333. PubMed ID: 38334418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulations of the pairwise interaction of monoclonal antibodies.
    Lapelosa M; Patapoff TW; Zarraga IE
    J Phys Chem B; 2014 Nov; 118(46):13132-41. PubMed ID: 25350229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.