These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 36194510)
1. Measuring dimensionality of cell-scaffold contacts of primary human bone marrow stromal cells cultured on electrospun fiber scaffolds. Florczyk SJ; Hotaling NA; Simon M; Chalfoun J; Horenberg AL; Schaub NJ; Wang D; Szczypiński PM; DeFelice VL; Bajcsy P; Simon CG J Biomed Mater Res A; 2023 Jan; 111(1):106-117. PubMed ID: 36194510 [TBL] [Abstract][Full Text] [Related]
3. Stromal-cell-derived extracellular matrix promotes the proliferation and retains the osteogenic differentiation capacity of mesenchymal stem cells on three-dimensional scaffolds. Antebi B; Zhang Z; Wang Y; Lu Z; Chen XD; Ling J Tissue Eng Part C Methods; 2015 Feb; 21(2):171-81. PubMed ID: 24965227 [TBL] [Abstract][Full Text] [Related]
4. Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells. Yao T; Chen H; Baker MB; Moroni L Tissue Eng Part C Methods; 2020 Jan; 26(1):11-22. PubMed ID: 31774033 [TBL] [Abstract][Full Text] [Related]
5. Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells. Hsieh WT; Liu YS; Lee YH; Rimando MG; Lin KH; Lee OK Acta Biomater; 2016 Mar; 32():210-222. PubMed ID: 26790775 [TBL] [Abstract][Full Text] [Related]
6. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Thibault RA; Scott Baggett L; Mikos AG; Kasper FK Tissue Eng Part A; 2010 Feb; 16(2):431-40. PubMed ID: 19863274 [TBL] [Abstract][Full Text] [Related]
7. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis. Brennan CM; Eichholz KF; Hoey DA Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493 [TBL] [Abstract][Full Text] [Related]
8. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds. Brennan MÁ; Renaud A; Gamblin AL; D'Arros C; Nedellec S; Trichet V; Layrolle P Biomed Mater; 2015 Aug; 10(4):045019. PubMed ID: 26238732 [TBL] [Abstract][Full Text] [Related]
9. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering. Kim B; Ventura R; Lee BT J Tissue Eng Regen Med; 2018 Feb; 12(2):e1256-e1267. PubMed ID: 28752541 [TBL] [Abstract][Full Text] [Related]
10. Antiosteoporotic Nanohydroxyapatite Zoledronate Scaffold Seeded with Bone Marrow Mesenchymal Stromal Cells for Bone Regeneration: A 3D In Vitro Model. Tschon M; Boanini E; Sartori M; Salamanna F; Panzavolta S; Bigi A; Fini M Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682677 [TBL] [Abstract][Full Text] [Related]
11. The fabrication of biomineralized fiber-aligned PLGA scaffolds and their effect on enhancing osteogenic differentiation of UCMSC cells. Li W; Yang X; Feng S; Yang S; Zeng R; Tu M J Mater Sci Mater Med; 2018 Jul; 29(8):117. PubMed ID: 30027312 [TBL] [Abstract][Full Text] [Related]
12. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Gaharwar AK; Mukundan S; Karaca E; Dolatshahi-Pirouz A; Patel A; Rangarajan K; Mihaila SM; Iviglia G; Zhang H; Khademhosseini A Tissue Eng Part A; 2014 Aug; 20(15-16):2088-101. PubMed ID: 24842693 [TBL] [Abstract][Full Text] [Related]
13. Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Leferink AM; Santos D; Karperien M; Truckenmüller RK; van Blitterswijk CA; Moroni L Integr Biol (Camb); 2015 Dec; 7(12):1574-86. PubMed ID: 26566169 [TBL] [Abstract][Full Text] [Related]
14. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [TBL] [Abstract][Full Text] [Related]
15. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering. Mathews S; Bhonde R; Gupta PK; Totey S J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1825-34. PubMed ID: 24723571 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering. Martins A; Pinho ED; Correlo VM; Faria S; Marques AP; Reis RL; Neves NM Tissue Eng Part A; 2010 Dec; 16(12):3599-609. PubMed ID: 20666612 [TBL] [Abstract][Full Text] [Related]
17. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach. Silva JC; Carvalho MS; Udangawa RN; Moura CS; Cabral JMS; L da Silva C; Ferreira FC; Vashishth D; Linhardt RJ J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2153-2166. PubMed ID: 31916699 [TBL] [Abstract][Full Text] [Related]
18. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
19. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596 [TBL] [Abstract][Full Text] [Related]
20. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Kennedy KM; Bhaw-Luximon A; Jhurry D Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]