These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36194679)

  • 41. Electron Transfer Reactivity of the Aqueous Iron(IV)-Oxo Complex. Outer-Sphere vs Proton-Coupled Electron Transfer.
    Bataineh H; Pestovsky O; Bakac A
    Inorg Chem; 2016 Jul; 55(13):6719-24. PubMed ID: 27320290
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction.
    Rossi F; Vanag VK; Epstein IR
    Chemistry; 2011 Feb; 17(7):2138-45. PubMed ID: 21254264
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Periodic change of viscosity and density in an oscillating chemical reaction.
    Yoshimoto M; Shirahama H; Kurosawa S; Naito M
    J Chem Phys; 2004 Apr; 120(15):7067-70. PubMed ID: 15267609
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Breakup of propagating waves through the development of a transient unexcitable regime.
    Ruisi V; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016102. PubMed ID: 18764015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The source of the carbon monoxide in the classical Belousov-Zhabotinsky reaction.
    Onel L; Wittmann M; Pelle K; Noszticzius Z; Sciascia L
    J Phys Chem A; 2007 Aug; 111(32):7805-12. PubMed ID: 17658772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanistic studies on oxidation of hydrazine by a mu-oxo diiron(III,III) complex in aqueous acidic media-proton coupled electron transfer.
    Bhattacharyya J; Dutta K; Mukhopadhyay S
    Dalton Trans; 2004 Sep; (18):2910-7. PubMed ID: 15349166
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of Catalytic O
    Pegis ML; Martin DJ; Wise CF; Brezny AC; Johnson SI; Johnson LE; Kumar N; Raugei S; Mayer JM
    J Am Chem Soc; 2019 May; 141(20):8315-8326. PubMed ID: 31042028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rebirth of a dead Belousov-Zhabotinsky oscillator.
    Onuma H; Okubo A; Yokokawa M; Endo M; Kurihashi A; Sawahata H
    J Phys Chem A; 2011 Dec; 115(49):14137-42. PubMed ID: 21999912
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Influence of a gradient static magnetic field on an unstirred Belousov-Zhabotinsky reaction.
    Okano H; Kitahata H; Akai D; Tomita N
    Bioelectromagnetics; 2008 Dec; 29(8):598-604. PubMed ID: 18512693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes.
    Zhao X; Georgakaki IP; Miller ML; Mejia-Rodriguez R; Chiang CY; Darensbourg MY
    Inorg Chem; 2002 Jul; 41(15):3917-28. PubMed ID: 12132916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expanding the Rare-Earth Metal BINOLate Catalytic Multitool beyond Enantioselective Organic Synthesis.
    Panetti GB; Robinson JR; Schelter EJ; Walsh PJ
    Acc Chem Res; 2021 Jun; 54(11):2637-2648. PubMed ID: 34014657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon dioxide evolution in a Belousov-Zhabotinsky type oscillating reaction with acetonedicarboxylic acid.
    Sevcík P; Misicák D; Adamcíková L
    J Phys Chem A; 2007 Oct; 111(40):10050-4. PubMed ID: 17850048
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimation of the activation energy in the Belousov-Zhabotinsky reaction by temperature effect on excitable waves.
    Zhang J; Zhou L; Ouyang Q
    J Phys Chem A; 2007 Feb; 111(6):1052-6. PubMed ID: 17249646
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Imidazole and imidazolate iron complexes: on the way for tuning 3D-structural characteristics and reactivity. Redox interconversions controlled by protonation state.
    Lambert F; Policar C; Durot S; Cesario M; Yuwei L; Korri-Youssoufi H; Keita B; Nadjo L
    Inorg Chem; 2004 Jul; 43(14):4178-88. PubMed ID: 15236529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ligand versus metal protonation of an iron hydrogenase active site mimic.
    Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R
    Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 58. μ-Nitrido Diiron Macrocyclic Platform: Particular Structure for Particular Catalysis.
    Afanasiev P; Sorokin AB
    Acc Chem Res; 2016 Apr; 49(4):583-93. PubMed ID: 26967682
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coupled redox potentials in manganese and iron superoxide dismutases from reaction kinetics and density functional/electrostatics calculations.
    Han WG; Lovell T; Noodleman L
    Inorg Chem; 2002 Jan; 41(2):205-18. PubMed ID: 11800609
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CO
    Zhu C; D'Agostino C; de Visser SP
    Inorg Chem; 2024 Mar; 63(10):4474-4481. PubMed ID: 38408891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.