These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36194754)

  • 1. Characterization of a Radical SAM Oxygenase for the Ether Crosslinking in Darobactin Biosynthesis.
    Nguyen H; Made Kresna ID; Böhringer N; Ruel J; Mora E; Kramer JC; Lewis K; Nicolet Y; Schäberle TF; Yokoyama K
    J Am Chem Soc; 2022 Oct; 144(41):18876-18886. PubMed ID: 36194754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical SAM-dependent ether crosslink in daropeptide biosynthesis.
    Guo S; Wang S; Ma S; Deng Z; Ding W; Zhang Q
    Nat Commun; 2022 Apr; 13(1):2361. PubMed ID: 35487921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzylic Radical Stabilization Permits Ether Formation During Darobactin Biosynthesis.
    Woodard AM; Peccati F; Navo CD; Jiménez-Osés G; Mitchell DA
    bioRxiv; 2023 Nov; ():. PubMed ID: 38076856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-Controlled Catalysis in the Ether Cross-Link-Forming Radical SAM Enzymes.
    Ma S; Xi W; Wang S; Chen H; Guo S; Mo T; Chen W; Deng Z; Chen F; Ding W; Zhang Q
    J Am Chem Soc; 2023 Oct; 145(42):22945-22953. PubMed ID: 37769281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Darobactin Substrate Engineering and Computation Show Radical Stability Governs Ether versus C-C Bond Formation.
    Woodard AM; Peccati F; Navo CD; Jiménez-Osés G; Mitchell DA
    J Am Chem Soc; 2024 May; 146(20):14328-14340. PubMed ID: 38728535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products.
    Lewis JK; Jochimsen AS; Lefave SJ; Young AP; Kincannon WM; Roberts AG; Kieber-Emmons MT; Bandarian V
    Biochemistry; 2021 Nov; 60(45):3347-3361. PubMed ID: 34730336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Darobactin Class of Antibiotics: A Comprehensive Review from Discovery to Recent Advancements.
    Dutta A; Sharma P; Dass D; Yarlagadda V
    ACS Infect Dis; 2024 Aug; 10(8):2584-2599. PubMed ID: 39028949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved broad-spectrum antibiotics against Gram-negative pathogens
    Groß S; Panter F; Pogorevc D; Seyfert CE; Deckarm S; Bader CD; Herrmann J; Müller R
    Chem Sci; 2021 Sep; 12(35):11882-11893. PubMed ID: 34659729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aliphatic Ether Bond Formation Expands the Scope of Radical SAM Enzymes in Natural Product Biosynthesis.
    Clark KA; Bushin LB; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jul; 141(27):10610-10615. PubMed ID: 31246011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Catalytic Mechanism of the Class C Radical S-Adenosylmethionine Methyltransferase NosN.
    Ding W; Li Y; Zhao J; Ji X; Mo T; Qianzhu H; Tu T; Deng Z; Yu Y; Chen F; Zhang Q
    Angew Chem Int Ed Engl; 2017 Mar; 56(14):3857-3861. PubMed ID: 28112859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme.
    Kubiak X; Polsinelli I; Chavas LMG; Fyfe CD; Guillot A; Fradale L; Brewee C; Grimaldi S; Gerbaud G; Thureau A; Legrand P; Berteau O; Benjdia A
    Nat Chem Biol; 2024 Mar; 20(3):382-391. PubMed ID: 38158457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Benjdia A; Balty C; Berteau O
    Front Chem; 2017; 5():87. PubMed ID: 29167789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes.
    Kostenko A; Lien Y; Mendauletova A; Ngendahimana T; Novitskiy IM; Eaton SS; Latham JA
    J Biol Chem; 2022 May; 298(5):101881. PubMed ID: 35367210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural features and substrate engagement in peptide-modifying radical SAM enzymes.
    Cheek LE; Zhu W
    Arch Biochem Biophys; 2024 Jun; 756():110012. PubMed ID: 38663796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis.
    Flühe L; Marahiel MA
    Curr Opin Chem Biol; 2013 Aug; 17(4):605-12. PubMed ID: 23891473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using peptide substrate analogs to characterize a radical intermediate in NosN catalysis.
    Wang B; Silakov A; Booker SJ
    Methods Enzymol; 2022; 666():469-487. PubMed ID: 35465928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical
    Benjdia A; Decamps L; Guillot A; Kubiak X; Ruffié P; Sandström C; Berteau O
    J Biol Chem; 2017 Jun; 292(26):10835-10844. PubMed ID: 28476884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessing and exploring the unusual chemistry by radical SAM-RiPP enzymes.
    Guo Q; Morinaka BI
    Curr Opin Chem Biol; 2024 Aug; 81():102483. PubMed ID: 38917731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
    Mahanta N; Hudson GA; Mitchell DA
    Biochemistry; 2017 Oct; 56(40):5229-5244. PubMed ID: 28895719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine-Tryptophan Crosslink.
    Clark KA; Seyedsayamdost MR
    J Am Chem Soc; 2022 Oct; 144(39):17876-17888. PubMed ID: 36128669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.