These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 36194837)

  • 1. Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects.
    Yu K; Huangfu H; Qin Q; Zhang Y; Gu X; Liu X; Zhang Y; Zhou Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47052-47065. PubMed ID: 36194837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus.
    Sun X; Ma Z; Zhao X; Jin W; Zhang C; Ma J; Qiang L; Wang W; Deng Q; Yang H; Zhao J; Liang Q; Zhou X; Li T; Wang J
    Bioact Mater; 2021 Mar; 6(3):757-769. PubMed ID: 33024897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone.
    Qi C; Deng Y; Xu L; Yang C; Zhu Y; Wang G; Wang Z; Wang L
    Theranostics; 2020; 10(2):741-756. PubMed ID: 31903148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation.
    Li D; Zhang K; Shi C; Liu L; Yan G; Liu C; Zhou Y; Hu Y; Sun H; Yang B
    Int J Nanomedicine; 2018; 13():7167-7181. PubMed ID: 30464466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite bioink incorporating cell-laden liver decellularized extracellular matrix for bioprinting of scaffolds for bone tissue engineering.
    You P; Sun H; Chen H; Li C; Mao Y; Zhang T; Yang H; Dong H
    Biomater Adv; 2024 Dec; 165():214017. PubMed ID: 39236580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat.
    Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X
    Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsphere-Gel Composite System with Mesenchymal Stem Cell Recruitment, Antibacterial, and Immunomodulatory Properties Promote Bone Regeneration via Sequential Release of LL37 and W9 Peptides.
    Ma S; Wang C; Dong Y; Jing W; Wei P; Peng C; Liu Z; Zhao B; Wang Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38525-38540. PubMed ID: 35973165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 3D-Printed Ordered Bredigite Scaffold Promotes Pro-Healing of Critical-Sized Bone Defects by Regulating Macrophage Polarization.
    Xuan Y; Li L; Zhang C; Zhang M; Cao J; Zhang Z
    Int J Nanomedicine; 2023; 18():917-932. PubMed ID: 36844434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration.
    Wang W; Zhu Y; Liu Y; Chen B; Li M; Yuan C; Wang P
    Tissue Cell; 2024 Jun; 88():102418. PubMed ID: 38776731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration.
    Qin W; Li C; Liu C; Wu S; Liu J; Ma J; Chen W; Zhao H; Zhao X
    J Biomater Appl; 2022 May; 36(10):1838-1851. PubMed ID: 35196910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF-β1/Smad pathway for repair of bone defect.
    Zhang J; Shi H; Zhang N; Hu L; Jing W; Pan J
    Cell Prolif; 2020 Oct; 53(10):e12907. PubMed ID: 32951298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GO/Cu Nanosheet-Integrated Hydrogel Platform as a Bioactive and Biocompatible Scaffold for Enhanced Calvarial Bone Regeneration.
    Yang Y; Zhou B; Li M; Sun Y; Jiang X; Zhou X; Hu C; Zhang D; Luo H; Tan W; Yang X; Lei S
    Int J Nanomedicine; 2024; 19():8309-8336. PubMed ID: 39161358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D GelMA ICC Scaffolds Combined with SW033291 for Bone Regeneration by Modulating Macrophage Polarization.
    Jiang Q; Bai G; Liu X; Chen Y; Xu G; Yang C; Zhang Z
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional bioprinted GelMA/GO composite hydrogel for stem cell osteogenic differentiation both in vitro and in vivo.
    Jiang Y; Zhou D; Jiang Y
    J Biomater Appl; 2024 May; 38(10):1087-1099. PubMed ID: 38561006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bioprinted autologous bone particle scaffolds for cranioplasty promote bone regeneration with both implanted and native BMSCs.
    Huan Y; Zhou D; Wu X; He X; Chen H; Li S; Jia B; Dou Y; Fei X; Wu S; Wei J; Fei Z; Xu T; Fei F
    Biofabrication; 2023 Mar; 15(2):. PubMed ID: 36812580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model.
    Jiang G; Li S; Yu K; He B; Hong J; Xu T; Meng J; Ye C; Chen Y; Shi Z; Feng G; Chen W; Yan S; He Y; Yan R
    Acta Biomater; 2021 Jul; 128():150-162. PubMed ID: 33894346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration.
    Miao G; Liang L; Li W; Ma C; Pan Y; Zhao H; Zhang Q; Xiao Y; Yang X
    Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.