These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36194851)
1. Radiomics-Based Machine Learning to Predict Recurrence in Glioma Patients Using Magnetic Resonance Imaging. Hu G; Hu X; Yang K; Yu Y; Jiang Z; Liu Y; Liu D; Hu X; Xiao H; Zou Y; You Y; Liu H; Chen J J Comput Assist Tomogr; 2023 Jan-Feb 01; 47(1):129-135. PubMed ID: 36194851 [TBL] [Abstract][Full Text] [Related]
2. Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Su X; Chen N; Sun H; Liu Y; Yang X; Wang W; Zhang S; Tan Q; Su J; Gong Q; Yue Q Neuro Oncol; 2020 Mar; 22(3):393-401. PubMed ID: 31563963 [TBL] [Abstract][Full Text] [Related]
3. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis. Nakamoto T; Takahashi W; Haga A; Takahashi S; Kiryu S; Nawa K; Ohta T; Ozaki S; Nozawa Y; Tanaka S; Mukasa A; Nakagawa K Sci Rep; 2019 Dec; 9(1):19411. PubMed ID: 31857632 [TBL] [Abstract][Full Text] [Related]
4. The efficacy of using a multiparametric magnetic resonance imaging-based radiomics model to distinguish glioma recurrence from pseudoprogression. Fu FX; Cai QL; Li G; Wu XJ; Hong L; Chen WS Magn Reson Imaging; 2024 Sep; 111():168-178. PubMed ID: 38729227 [TBL] [Abstract][Full Text] [Related]
5. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting. Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211 [TBL] [Abstract][Full Text] [Related]
6. Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O Zhang S; Sun H; Su X; Yang X; Wang W; Wan X; Tan Q; Chen N; Yue Q; Gong Q J Magn Reson Imaging; 2021 Jul; 54(1):197-205. PubMed ID: 33393131 [TBL] [Abstract][Full Text] [Related]
7. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors. Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas. Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of a machine learning algorithm for predicting diffuse midline glioma, H3 K27-altered, H3 K27 wild-type high-grade glioma, and primary CNS lymphoma of the brain midline in adults. Lv K; Chen H; Cao X; Du P; Chen J; Liu X; Zhu L; Geng D; Zhang J J Neurosurg; 2023 Aug; 139(2):393-401. PubMed ID: 36681946 [TBL] [Abstract][Full Text] [Related]
10. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004 [TBL] [Abstract][Full Text] [Related]
11. [Predicting cerebral glioma enhancement pattern using a machine learning-based magnetic resonance imaging radiomics model]. He H; Guo E; Meng W; Wang Y; Wang W; He W; Wu Y; Yang W Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jan; 44(1):194-200. PubMed ID: 38293992 [TBL] [Abstract][Full Text] [Related]
12. Machine learning-based multiparametric magnetic resonance imaging radiomics model for distinguishing central neurocytoma from glioma of lateral ventricle. Mo H; Liang W; Huang Z; Li X; Xiao X; Liu H; He J; Xu Y; Wu Y Eur Radiol; 2023 Jun; 33(6):4259-4269. PubMed ID: 36547672 [TBL] [Abstract][Full Text] [Related]
13. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Hashido T; Saito S; Ishida T J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479 [TBL] [Abstract][Full Text] [Related]
14. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Glioma enhancement pattern using a MRI radiomics-based model. Wang W; Wang Y; Meng W; Guo E; He H; Huang G; He W; Wu Y Medicine (Baltimore); 2024 Sep; 103(36):e39512. PubMed ID: 39252245 [TBL] [Abstract][Full Text] [Related]
16. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning. Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177 [TBL] [Abstract][Full Text] [Related]
17. BTK Expression Level Prediction and the High-Grade Glioma Prognosis Using Radiomic Machine Learning Models. Jiang C; Sun C; Wang X; Ma S; Jia W; Zhang D J Imaging Inform Med; 2024 Aug; 37(4):1359-1374. PubMed ID: 38381384 [TBL] [Abstract][Full Text] [Related]
18. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421 [TBL] [Abstract][Full Text] [Related]
19. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Li G; Li L; Li Y; Qian Z; Wu F; He Y; Jiang H; Li R; Wang D; Zhai Y; Wang Z; Jiang T; Zhang J; Zhang W Brain; 2022 Apr; 145(3):1151-1161. PubMed ID: 35136934 [TBL] [Abstract][Full Text] [Related]
20. Magnetic resonance imaging (MRI)-based intratumoral and peritumoral radiomics for prognosis prediction in glioma patients. Gao M; Cheng J; Qiu A; Zhao D; Wang J; Liu J Clin Radiol; 2024 Nov; 79(11):e1383-e1393. PubMed ID: 39218720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]