BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36194886)

  • 1. Flow Field-Flow Fractionation with a Thickness-Tapered Channel.
    Shin SY; Seo JW; Kim JY; Williams PS; Moon MH
    Anal Chem; 2022 Oct; 94(41):14460-14466. PubMed ID: 36194886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of a thickness-tapered channel in flow field-flow fractionation with a conventional channel with flow rate programming.
    Kim YB; Kim J; Williams PS; Moon MH
    J Chromatogr A; 2024 Jun; 1724():464927. PubMed ID: 38677152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of steric transition with field programming in frit inlet asymmetrical flow field-flow fractionation.
    Kim YB; Yang JS; Moon MH
    J Chromatogr A; 2018 Nov; 1576():131-136. PubMed ID: 30253911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different elution modes and field programming in gravitational field-flow fractionation. Effect of channel angle.
    Park MR; Kang DY; Chmelik J; Kang N; Kim JS; Lee S
    J Chromatogr A; 2008 Oct; 1209(1-2):206-11. PubMed ID: 18805537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on steric transition in asymmetrical flow field-flow fractionation and application to characterization of high-energy material.
    Dou H; Lee YJ; Jung EC; Lee BC; Lee S
    J Chromatogr A; 2013 Aug; 1304():211-9. PubMed ID: 23871284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Separation and characterization of
    Wang M; Zhang XR; Dou YW; Ye H; Dou HY
    Se Pu; 2023 Aug; 41(8):714-721. PubMed ID: 37534559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different elution modes and field programming in gravitational field-flow fractionation. IV. Field programming achieved with channels of non-constant cross-sections.
    Plocková J; Matulík F; Chmelík J
    J Chromatogr A; 2002 Apr; 955(1):95-103. PubMed ID: 12061568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.
    Guo S; Qiu BL; Zhu CQ; Yang YG; Wu D; Liang QH; Han NY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Sep; 1031():1-7. PubMed ID: 27447927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization for size separation of graphene oxide sheets by flow/hyperlayer field-flow fractionation.
    Ko M; Choi HJ; Kim JY; Kim IH; Kim SO; Moon MH
    J Chromatogr A; 2022 Oct; 1681():463475. PubMed ID: 36088778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.
    Dou H; Jung EC; Lee S
    J Chromatogr A; 2015 May; 1393():115-21. PubMed ID: 25817708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the use of a short channel can improve the separation efficiency of nanoparticles in asymmetrical flow field-flow fractionation.
    Ojeda D; Sánchez P; Bolea E; Laborda F; Castillo JR
    J Chromatogr A; 2021 Jan; 1635():461759. PubMed ID: 33278672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow optimisations with increased channel thickness in asymmetrical flow field-flow fractionation.
    Yang JS; Moon MH
    J Chromatogr A; 2018 Dec; 1581-1582():100-104. PubMed ID: 30396680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field-flow fractionation and hydrodynamic chromatography on a microfluidic chip.
    Shendruk TN; Tahvildari R; Catafard NM; Andrzejewski L; Gigault C; Todd A; Gagne-Dumais L; Slater GW; Godin M
    Anal Chem; 2013 Jun; 85(12):5981-8. PubMed ID: 23650976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different elution modes and field programming in gravitational field-flow fractionation. 2. Experimental verification of the range of conditions for flow-rate and carrier liquid density programming.
    Plocková J; Chmelík J
    J Chromatogr A; 2000 Feb; 868(2):217-27. PubMed ID: 10701672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different elution modes and field programming in gravitational field-flow fractionation: field programming using density and viscosity gradients.
    Plocková J; Chmelík J
    J Chromatogr A; 2006 Jun; 1118(2):253-60. PubMed ID: 16696985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field and flow programming in frit-inlet asymmetrical flow field-flow fractionation.
    Moon MH; Williams PS; Kang D; Hwang I
    J Chromatogr A; 2002 May; 955(2):263-72. PubMed ID: 12075930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of asymmetrical flow field-flow fractionation channel geometry on separation efficiency.
    Ahn JY; Kim KH; Lee JY; Williams PS; Moon MH
    J Chromatogr A; 2010 Jun; 1217(24):3876-80. PubMed ID: 20439106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of channel width on the retention of colloidal particles in polarization, steric, and focusing micro-thermal field-flow fractionation.
    Janca J; Ananieva IA; Menshikova AY; Evseeva TG; Dupák J
    J Chromatogr A; 2004 Aug; 1046(1-2):167-73. PubMed ID: 15387186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.
    Plocková J; Chmelík J
    J Chromatogr A; 2001 May; 918(2):361-70. PubMed ID: 11407583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of edge effects in micro-thermal field-flow fractionation channel of low aspect ratio by splitting the carrier liquid flow into the main central stream and the thin stream layers at the side channel walls.
    Janca J; Dupák J
    J Chromatogr A; 2005 Mar; 1068(2):261-8. PubMed ID: 15830932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.