These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Combined gene and environmental engineering offers a synergetic strategy to enhance r-protein production in Chinese hamster ovary cells. Torres M; Dickson AJ Biotechnol Bioeng; 2022 Feb; 119(2):550-565. PubMed ID: 34821376 [TBL] [Abstract][Full Text] [Related]
5. miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering. Stiefel F; Fischer S; Sczyrba A; Otte K; Hesse F J Biotechnol; 2016 May; 225():31-43. PubMed ID: 27002234 [TBL] [Abstract][Full Text] [Related]
6. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
7. Metabolic trends of Chinese hamster ovary cells in biopharmaceutical production under batch and fed-batch conditions. Rish AJ; Drennen JK; Anderson CA Biotechnol Prog; 2022 Jan; 38(1):e3220. PubMed ID: 34676699 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. Toussaint C; Henry O; Durocher Y J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123 [TBL] [Abstract][Full Text] [Related]
9. Autophagy-inducing peptide increases CHO cell monoclonal antibody production in batch and fed-batch cultures. Braasch K; Kryworuchko M; Piret JM Biotechnol Bioeng; 2021 May; 118(5):1876-1883. PubMed ID: 33543765 [TBL] [Abstract][Full Text] [Related]
10. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development. Fischer S; Marquart KF; Pieper LA; Fieder J; Gamer M; Gorr I; Schulz P; Bradl H Biotechnol Bioeng; 2017 Jul; 114(7):1495-1510. PubMed ID: 28262952 [TBL] [Abstract][Full Text] [Related]
11. Progress in fed-batch culture for recombinant protein production in CHO cells. Xu WJ; Lin Y; Mi CL; Pang JY; Wang TY Appl Microbiol Biotechnol; 2023 Feb; 107(4):1063-1075. PubMed ID: 36648523 [TBL] [Abstract][Full Text] [Related]
12. Precision control of recombinant gene transcription for CHO cell synthetic biology. Brown AJ; James DC Biotechnol Adv; 2016; 34(5):492-503. PubMed ID: 26721629 [TBL] [Abstract][Full Text] [Related]
13. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process. Calmels C; McCann A; Malphettes L; Andersen MR Metab Eng; 2019 Jan; 51():9-19. PubMed ID: 30227251 [TBL] [Abstract][Full Text] [Related]
14. The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Fischer S; Handrick R; Otte K Biotechnol Adv; 2015 Dec; 33(8):1878-96. PubMed ID: 26523782 [TBL] [Abstract][Full Text] [Related]
15. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. Poulain A; Mullick A; Massie B; Durocher Y J Biotechnol; 2019 Apr; 296():32-41. PubMed ID: 30885656 [TBL] [Abstract][Full Text] [Related]
16. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors. Tan JG; Lee YY; Wang T; Yap MG; Tan TW; Ng SK Biotechnol J; 2015 May; 10(5):790-800. PubMed ID: 25740626 [TBL] [Abstract][Full Text] [Related]
17. CHO genome mining for synthetic promoter design. Johari YB; Brown AJ; Alves CS; Zhou Y; Wright CM; Estes SD; Kshirsagar R; James DC J Biotechnol; 2019 Mar; 294():1-13. PubMed ID: 30703471 [TBL] [Abstract][Full Text] [Related]
18. Metabolic analysis of antibody producing CHO cells in fed-batch production. Dean J; Reddy P Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898 [TBL] [Abstract][Full Text] [Related]
19. Addition of valproic acid to CHO cell fed-batch cultures improves monoclonal antibody titers. Yang WC; Lu J; Nguyen NB; Zhang A; Healy NV; Kshirsagar R; Ryll T; Huang YM Mol Biotechnol; 2014 May; 56(5):421-8. PubMed ID: 24381145 [TBL] [Abstract][Full Text] [Related]
20. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Chitwood DG; Wang Q; Klaubert SR; Green K; Wu CH; Harcum SW; Saski CA Sci Rep; 2023 Jan; 13(1):1200. PubMed ID: 36681715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]