BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36194967)

  • 1. A biophysically guided constitutive law of the musculotendon-complex: modelling and numerical implementation in Abaqus.
    Saini H; Röhrle O
    Comput Methods Programs Biomed; 2022 Nov; 226():107152. PubMed ID: 36194967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.
    Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B
    Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
    Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N
    J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On implementation of fibrous connective tissues' damage in Abaqus software.
    Sabik A; Witkowski W
    J Biomech; 2023 Aug; 157():111736. PubMed ID: 37517283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics.
    Toaquiza Tubon JD; Moreno-Flores O; Sree VD; Tepole AB
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1-16. PubMed ID: 36057750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation data and FORTRAN code to compare the stress response of two transversely isotropic hyperelastic models in ABAQUS.
    Castillo-Méndez C; Ortiz A
    Data Brief; 2022 Apr; 41():107853. PubMed ID: 35128007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic generation of user material subroutines for biomechanical growth analysis.
    Young JM; Yao J; Ramasubramanian A; Taber LA; Perucchio R
    J Biomech Eng; 2010 Oct; 132(10):104505. PubMed ID: 20887023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smoothed finite element methods in simulation of active contraction of myocardial tissue samples.
    Martonová D; Holz D; Duong MT; Leyendecker S
    J Biomech; 2023 Aug; 157():111691. PubMed ID: 37441914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Modelling-Simulation-Analysis Workflow to Investigate Stump-Socket Interaction Using Patient-Specific, Three-Dimensional, Continuum-Mechanical, Finite Element Residual Limb Models.
    Ramasamy E; Avci O; Dorow B; Chong SY; Gizzi L; Steidle G; Schick F; Röhrle O
    Front Bioeng Biotechnol; 2018; 6():126. PubMed ID: 30283777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle Constitutive Model With a Tangent Modulus Approximation: Ansys Implementation and Verification.
    Sampaio de Oliveira ML; Uchida TK
    J Biomech Eng; 2023 Jul; 145(7):. PubMed ID: 36808465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-muscle, continuum-mechanical forward simulation of the upper limb.
    Röhrle O; Sprenger M; Schmitt S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a new constitutive model for abdominal muscles.
    Tuset L; Fortuny G; Herrero J; Puigjaner D; López JM
    Comput Methods Programs Biomed; 2019 Oct; 179():104988. PubMed ID: 31443865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles.
    Li J; Lu Y; Miller SC; Jin Z; Hua X
    J Biomech; 2019 Sep; 94():230-234. PubMed ID: 31421809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and parameter identification of a visco-hyperelastic model for the periodontal ligament.
    Huang H; Tang W; Tan Q; Yan B
    J Mech Behav Biomed Mater; 2017 Apr; 68():210-215. PubMed ID: 28187321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical simulation of thorax deformation using finite element approach.
    Zhang G; Chen X; Ohgi J; Miura T; Nakamoto A; Matsumura C; Sugiura S; Hisada T
    Biomed Eng Online; 2016 Feb; 15():18. PubMed ID: 26852020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A visco-hyperelastic constitutive model and its application in bovine tongue tissue.
    Yousefi AK; Nazari MA; Perrier P; Panahi MS; Payan Y
    J Biomech; 2018 Apr; 71():190-198. PubMed ID: 29477259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model.
    Charles JP; Cappellari O; Spence AJ; Wells DJ; Hutchinson JR
    J Anat; 2016 Oct; 229(4):514-35. PubMed ID: 27173448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Source codes and simulation data for the finite element implementation of the conventional and localizing gradient damage methods in ABAQUS.
    Sarkar S; Singh IV; Mishra BK; Shedbale AS; Poh LH
    Data Brief; 2019 Oct; 26():104533. PubMed ID: 31667295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.