These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36194967)
21. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. Wu JZ; Herzog W; Epstein M J Biomech; 1998 Feb; 31(2):165-9. PubMed ID: 9593211 [TBL] [Abstract][Full Text] [Related]
22. A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. Tang CY; Zhang G; Tsui CP J Biomech; 2009 May; 42(7):865-72. PubMed ID: 19264310 [TBL] [Abstract][Full Text] [Related]
23. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot. Mithraratne K; Ho H; Hunter PJ; Fernandez JW Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636 [TBL] [Abstract][Full Text] [Related]
24. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects. Limbert G; Middleton J; Laizans J; Dobelis M; Knets I Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954 [TBL] [Abstract][Full Text] [Related]
25. A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle. Böl M; Weikert R; Weichert C J Mech Behav Biomed Mater; 2011 Oct; 4(7):1299-310. PubMed ID: 21783139 [TBL] [Abstract][Full Text] [Related]
26. An open source software tool to assign the material properties of bone for ABAQUS finite element simulations. Pegg EC; Gill HS J Biomech; 2016 Sep; 49(13):3116-3121. PubMed ID: 27543250 [TBL] [Abstract][Full Text] [Related]
27. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart. Masithulela F Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998 [TBL] [Abstract][Full Text] [Related]
28. Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization. Spyrou LA; Brisard S; Danas K J Mech Behav Biomed Mater; 2019 Apr; 92():97-117. PubMed ID: 30677705 [TBL] [Abstract][Full Text] [Related]
29. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle. Hodgson JA; Chi SW; Yang JP; Chen JS; Edgerton VR; Sinha S J Mech Behav Biomed Mater; 2012 May; 9():163-83. PubMed ID: 22498294 [TBL] [Abstract][Full Text] [Related]
30. Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs). Nolan DR; Lally C; McGarry JP J Mech Behav Biomed Mater; 2022 Feb; 126():104940. PubMed ID: 34923365 [TBL] [Abstract][Full Text] [Related]
31. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software. Idkaidek A; Jasiuk I J Robot Surg; 2015 Dec; 9(4):299-310. PubMed ID: 26530842 [TBL] [Abstract][Full Text] [Related]
32. Development and verification of a physiologically motivated internal controller for the open-source extended Hill-type muscle model in LS-DYNA. Martynenko OV; Kempter F; Kleinbach C; Nölle LV; Lerge P; Schmitt S; Fehr J Biomech Model Mechanobiol; 2023 Dec; 22(6):2003-2032. PubMed ID: 37542621 [TBL] [Abstract][Full Text] [Related]
33. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model. Khodaei H; Mostofizadeh S; Brolin K; Johansson H; Osth J Proc Inst Mech Eng H; 2013 May; 227(5):571-80. PubMed ID: 23637267 [TBL] [Abstract][Full Text] [Related]
34. On modelling large deformations of heterogeneous biological tissues using a mixed finite element formulation. Wu T; Hung AP; Hunter P; Mithraratne K Comput Methods Biomech Biomed Engin; 2015; 18(5):477-84. PubMed ID: 23895255 [TBL] [Abstract][Full Text] [Related]
35. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling. Böl M; Iyer R; Dittmann J; Garcés-Schröder M; Dietzel A Acta Biomater; 2019 Jul; 92():277-289. PubMed ID: 31077887 [TBL] [Abstract][Full Text] [Related]
36. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling. Modenese L; Montefiori E; Wang A; Wesarg S; Viceconti M; Mazzà C J Biomech; 2018 May; 73():108-118. PubMed ID: 29673935 [TBL] [Abstract][Full Text] [Related]
37. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study. Wan C; Hao Z; Wen S J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897 [TBL] [Abstract][Full Text] [Related]
38. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546 [TBL] [Abstract][Full Text] [Related]
39. A nonlinear dynamic finite element approach for simulating muscular hydrostats. Vavourakis V; Kazakidi A; Tsakiris DP; Ekaterinaris JA Comput Methods Biomech Biomed Engin; 2014; 17(8):917-31. PubMed ID: 23025686 [TBL] [Abstract][Full Text] [Related]
40. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression. Lee CS; Lee JM; Youn B; Kim HS; Shin JK; Goh TS; Lee JS J Mech Behav Biomed Mater; 2017 Jan; 65():213-223. PubMed ID: 27592290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]