BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 36195098)

  • 1. Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications.
    Sinha Mahapatra P; Ganguly R; Ghosh A; Chatterjee S; Lowrey S; Sommers AD; Megaridis CM
    Chem Rev; 2022 Nov; 122(22):16752-16801. PubMed ID: 36195098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances on open fluidic systems for biomedical applications: A review.
    Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface behaviors of droplet manipulation in microfluidics devices.
    Wu L; Guo Z; Liu W
    Adv Colloid Interface Sci; 2022 Oct; 308():102770. PubMed ID: 36113310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.
    Dak P; Ebrahimi A; Swaminathan V; Duarte-Guevara C; Bashir R; Alam MA
    Biosensors (Basel); 2016 Apr; 6(2):14. PubMed ID: 27089377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.
    Chen A; Pan T
    Lab Chip; 2014 Sep; 14(17):3401-8. PubMed ID: 25007840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in non-optical microfluidic platforms for bioparticle detection.
    Bayinqiaoge ; Zhang Y; Cole T; Zheng J; Guo J; Tang SY
    Biosens Bioelectron; 2023 Feb; 222():114944. PubMed ID: 36470061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices.
    Sinha A; Basu M; Chandna P
    Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategically Designing a Pumpless Microfluidic Device on an "Inert" Polypropylene Substrate with Potential Application in Biosensing and Diagnostics.
    Shirani E; Razmjou A; Tavassoli H; Landarani-Isfahani A; Rezaei S; Abbasi Kajani A; Asadnia M; Hou J; Ebrahimi Warkiani M
    Langmuir; 2017 Jun; 33(22):5565-5576. PubMed ID: 28489410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential Point-of-Care Microfluidic Devices to Diagnose Iron Deficiency Anemia.
    Yap BK; M Soair SN; Talik NA; Lim WF; Mei I L
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30103424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Microfluidics for Point-of-Care Blood Sensing.
    Tavakolidakhrabadi A; Stark M; Bacher U; Legros M; Bessire C
    Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms.
    Ghosh A; Ganguly R; Schutzius TM; Megaridis CM
    Lab Chip; 2014 May; 14(9):1538-50. PubMed ID: 24622962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics.
    Hassan SU; Tariq A; Noreen Z; Donia A; Zaidi SZJ; Bokhari H; Zhang X
    Diagnostics (Basel); 2020 Jul; 10(8):. PubMed ID: 32708045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamentals, biomedical applications and future potential of micro-scale cavitation-a review.
    Seyedmirzaei Sarraf S; Rokhsar Talabazar F; Namli I; Maleki M; Sheibani Aghdam A; Gharib G; Grishenkov D; Ghorbani M; Koşar A
    Lab Chip; 2022 Jun; 22(12):2237-2258. PubMed ID: 35531747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomedical Applications of Microfluidic Devices: A Review.
    Gharib G; Bütün İ; Muganlı Z; Kozalak G; Namlı İ; Sarraf SS; Ahmadi VE; Toyran E; van Wijnen AJ; Koşar A
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic lab-on-chips.
    Zhang Q; Zhang M; Djeghlaf L; Bataille J; Gamby J; Haghiri-Gosnet AM; Pallandre A
    Electrophoresis; 2017 Apr; 38(7):953-976. PubMed ID: 28059451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.