These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Recent advances on open fluidic systems for biomedical applications: A review. Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977 [TBL] [Abstract][Full Text] [Related]
3. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Samiei E; Tabrizian M; Hoorfar M Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540 [TBL] [Abstract][Full Text] [Related]
4. Surface behaviors of droplet manipulation in microfluidics devices. Wu L; Guo Z; Liu W Adv Colloid Interface Sci; 2022 Oct; 308():102770. PubMed ID: 36113310 [TBL] [Abstract][Full Text] [Related]
5. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms. Dak P; Ebrahimi A; Swaminathan V; Duarte-Guevara C; Bashir R; Alam MA Biosensors (Basel); 2016 Apr; 6(2):14. PubMed ID: 27089377 [TBL] [Abstract][Full Text] [Related]
6. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations. Chen A; Pan T Lab Chip; 2014 Sep; 14(17):3401-8. PubMed ID: 25007840 [TBL] [Abstract][Full Text] [Related]
7. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Olanrewaju A; Beaugrand M; Yafia M; Juncker D Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168 [TBL] [Abstract][Full Text] [Related]
9. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing. Islam MN; Doria SM; Fu X; Gagnon ZR Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391 [TBL] [Abstract][Full Text] [Related]
10. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices. Sinha A; Basu M; Chandna P Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281 [TBL] [Abstract][Full Text] [Related]
11. Strategically Designing a Pumpless Microfluidic Device on an "Inert" Polypropylene Substrate with Potential Application in Biosensing and Diagnostics. Shirani E; Razmjou A; Tavassoli H; Landarani-Isfahani A; Rezaei S; Abbasi Kajani A; Asadnia M; Hou J; Ebrahimi Warkiani M Langmuir; 2017 Jun; 33(22):5565-5576. PubMed ID: 28489410 [TBL] [Abstract][Full Text] [Related]
12. Potential Point-of-Care Microfluidic Devices to Diagnose Iron Deficiency Anemia. Yap BK; M Soair SN; Talik NA; Lim WF; Mei I L Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30103424 [TBL] [Abstract][Full Text] [Related]
13. Optimization of Microfluidics for Point-of-Care Blood Sensing. Tavakolidakhrabadi A; Stark M; Bacher U; Legros M; Bessire C Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920570 [TBL] [Abstract][Full Text] [Related]
14. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms. Ghosh A; Ganguly R; Schutzius TM; Megaridis CM Lab Chip; 2014 May; 14(9):1538-50. PubMed ID: 24622962 [TBL] [Abstract][Full Text] [Related]
15. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics. Hassan SU; Tariq A; Noreen Z; Donia A; Zaidi SZJ; Bokhari H; Zhang X Diagnostics (Basel); 2020 Jul; 10(8):. PubMed ID: 32708045 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface. Hong L; Pan T Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123 [TBL] [Abstract][Full Text] [Related]
17. Fundamentals, biomedical applications and future potential of micro-scale cavitation-a review. Seyedmirzaei Sarraf S; Rokhsar Talabazar F; Namli I; Maleki M; Sheibani Aghdam A; Gharib G; Grishenkov D; Ghorbani M; Koşar A Lab Chip; 2022 Jun; 22(12):2237-2258. PubMed ID: 35531747 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830 [TBL] [Abstract][Full Text] [Related]
19. Biomedical Applications of Microfluidic Devices: A Review. Gharib G; Bütün İ; Muganlı Z; Kozalak G; Namlı İ; Sarraf SS; Ahmadi VE; Toyran E; van Wijnen AJ; Koşar A Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421141 [TBL] [Abstract][Full Text] [Related]
20. Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic lab-on-chips. Zhang Q; Zhang M; Djeghlaf L; Bataille J; Gamby J; Haghiri-Gosnet AM; Pallandre A Electrophoresis; 2017 Apr; 38(7):953-976. PubMed ID: 28059451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]