These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36195439)

  • 1. Active Licking Shapes Cortical Taste Coding.
    Neese C; Bouaichi CG; Needham T; Bauer M; Bertram R; Vincis R
    J Neurosci; 2022 Nov; 42(46):8658-8669. PubMed ID: 36195439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical processing of chemosensory and hedonic features of taste in active licking mice.
    Bouaichi CG; Vincis R
    J Neurophysiol; 2020 May; 123(5):1995-2009. PubMed ID: 32319839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer- and Cell Type-Specific Response Properties of Gustatory Cortex Neurons in Awake Mice.
    Dikecligil GN; Graham DM; Park IM; Fontanini A
    J Neurosci; 2020 Dec; 40(50):9676-9691. PubMed ID: 33172981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single and population coding of taste in the gustatory cortex of awake mice.
    Levitan D; Lin JY; Wachutka J; Mukherjee N; Nelson SB; Katz DB
    J Neurophysiol; 2019 Oct; 122(4):1342-1356. PubMed ID: 31339800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical Coding of Gustatory and Thermal Signals in Active Licking Mice.
    Nash AN; Shakeshaft M; Bouaichi CG; Odegaard KE; Needham T; Bauer M; Bertram R; Vincis R
    bioRxiv; 2024 Aug; ():. PubMed ID: 39185224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taste coding in the parabrachial nucleus of the pons in awake, freely licking rats and comparison with the nucleus of the solitary tract.
    Weiss MS; Victor JD; Di Lorenzo PM
    J Neurophysiol; 2014 Apr; 111(8):1655-70. PubMed ID: 24381029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Odor-taste convergence in the nucleus of the solitary tract of the awake freely licking rat.
    Escanilla OD; Victor JD; Di Lorenzo PM
    J Neurosci; 2015 Apr; 35(16):6284-97. PubMed ID: 25904782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensembles of gustatory cortical neurons anticipate and discriminate between tastants in a single lick.
    Stapleton JR; Lavine ML; Nicolelis MA; Simon SA
    Front Neurosci; 2007 Nov; 1(1):161-74. PubMed ID: 18982126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing GABAergic Tone in the Rostral Nucleus of the Solitary Tract Reconfigures Sensorimotor Neural Activity.
    Sammons JD; Bass CE; Victor JD; Di Lorenzo PM
    J Neurosci; 2021 Jan; 41(3):489-501. PubMed ID: 33234608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.
    Samuelsen CL; Fontanini A
    J Neurosci; 2017 Jan; 37(2):244-257. PubMed ID: 28077705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid taste responses in the gustatory cortex during licking.
    Stapleton JR; Lavine ML; Wolpert RL; Nicolelis MA; Simon SA
    J Neurosci; 2006 Apr; 26(15):4126-38. PubMed ID: 16611830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taste coding in the nucleus of the solitary tract of the awake, freely licking rat.
    Roussin AT; D'Agostino AE; Fooden AM; Victor JD; Di Lorenzo PM
    J Neurosci; 2012 Aug; 32(31):10494-506. PubMed ID: 22855799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State Dependency of Chemosensory Coding in the Gustatory Thalamus (VPMpc) of Alert Rats.
    Liu H; Fontanini A
    J Neurosci; 2015 Nov; 35(47):15479-91. PubMed ID: 26609147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning.
    Gutierrez R; Simon SA; Nicolelis MA
    J Neurosci; 2010 Jan; 30(1):287-303. PubMed ID: 20053910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability in responses and temporal coding of tastants of similar quality in the nucleus of the solitary tract of the rat.
    Roussin AT; Victor JD; Chen JY; Di Lorenzo PM
    J Neurophysiol; 2008 Feb; 99(2):644-55. PubMed ID: 17913985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning enhances representations of taste-guided decisions in the mouse gustatory insular cortex.
    Kogan JF; Fontanini A
    Curr Biol; 2024 May; 34(9):1880-1892.e5. PubMed ID: 38631343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses.
    Piette CE; Baez-Santiago MA; Reid EE; Katz DB; Moran A
    J Neurosci; 2012 Jul; 32(29):9981-91. PubMed ID: 22815512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing of hedonic and chemosensory features of taste in medial prefrontal and insular networks.
    Jezzini A; Mazzucato L; La Camera G; Fontanini A
    J Neurosci; 2013 Nov; 33(48):18966-78. PubMed ID: 24285901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic and multimodal responses of gustatory cortical neurons in awake rats.
    Katz DB; Simon SA; Nicolelis MA
    J Neurosci; 2001 Jun; 21(12):4478-89. PubMed ID: 11404435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral thermal processing in the gustatory cortex of awake mice.
    Bouaichi CG; Odegaard KE; Neese C; Vincis R
    Chem Senses; 2023 Jan; 48():. PubMed ID: 37850853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.