These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36195562)

  • 21. Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films.
    Chen C; Wang Z; Wu K; Ye H
    Sci Technol Adv Mater; 2018; 19(1):174-184. PubMed ID: 29511395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New design for highly durable infrared-reflective coatings.
    Hu C; Liu J; Wang J; Gu Z; Li C; Li Q; Li Y; Zhang S; Bi C; Fan X; Zheng W
    Light Sci Appl; 2018; 7():17175. PubMed ID: 30839546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural, Compositional, and Plasmonic Characteristics of Ti-Zr Ternary Nitride Thin Films Tuned by the Nitrogen Flow Ratio in Magnetron Sputtering.
    Chen L; Ran Y; Jiang Z; Li Y; Wang Z
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Infrared Plasmonic Metamaterials Based on Transparent Nanoparticle Films of In
    Matsui H; Shoji M; Higano S; Yoda H; Ono Y; Yang J; Misumi T; Fujita A
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49313-49325. PubMed ID: 36261131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoscale Artificial Plasmonic Lattice in Self-Assembled Vertically Aligned Nitride-Metal Hybrid Metamaterials.
    Huang J; Wang X; Hogan NL; Wu S; Lu P; Fan Z; Dai Y; Zeng B; Starko-Bowes R; Jian J; Wang H; Li L; Prasankumar RP; Yarotski D; Sheldon M; Chen HT; Jacob Z; Zhang X; Wang H
    Adv Sci (Weinh); 2018 Jul; 5(7):1800416. PubMed ID: 30027062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploiting zirconium nitride for an efficient heat-resistant absorber and emitter pair for solar thermophotovoltaic systems.
    Ijaz S; Rana AS; Ahmad Z; Rehman B; Zubair M; Mehmood MQ
    Opt Express; 2021 Sep; 29(20):31537-31548. PubMed ID: 34615245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic Titanium Nitride Tubes Decorated with Ru Nanoparticles as Photo-Thermal Catalyst for CO
    Mateo D; Navarro JC; Khan IS; Ruiz-Martinez J; Gascon J
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering.
    Chang CC; Nogan J; Yang ZP; Kort-Kamp WJM; Ross W; Luk TS; Dalvit DAR; Azad AK; Chen HT
    Sci Rep; 2019 Oct; 9(1):15287. PubMed ID: 31653881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Spontaneous Emission of Monolayer MoS
    Minn K; Anopchenko A; Chang CW; Mishra R; Kim J; Zhang Z; Lu YJ; Gwo S; Lee HWH
    Nano Lett; 2021 Jun; 21(12):4928-4936. PubMed ID: 34109795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Observation of Photoinduced Charge Separation at Transition-Metal Nitride-Semiconductor Interfaces.
    Yu MW; Ishii S; Shinde SL; Tanjaya NK; Chen KP; Nagao T
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56562-56567. PubMed ID: 33259198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films.
    Murai S; Fujita K; Daido Y; Yasuhara R; Kamakura R; Tanaka K
    Opt Express; 2016 Jan; 24(2):1143-53. PubMed ID: 26832498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrathin TiN Epitaxial Films as Transparent Conductive Electrodes.
    Ho IH; Chang CW; Chen YL; Chang WY; Kuo TJ; Lu YJ; Gwo S; Ahn H
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16839-16845. PubMed ID: 35363462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low Resistivity Hafnium Nitride Thin Films Deposited by Inductively Coupled Plasma Assisted Magnetron Sputtering in Microelectronics.
    Chun SY
    J Nanosci Nanotechnol; 2021 Jul; 21(7):4129-4132. PubMed ID: 33715759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polar Semiconducting Scandium Nitride as an Infrared Plasmon and Phonon-Polaritonic Material.
    Maurya KC; Rao D; Acharya S; Rao P; Pillai AIK; Selvaraja SK; Garbrecht M; Saha B
    Nano Lett; 2022 Jul; 22(13):5182-5190. PubMed ID: 35713183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overview of Synthetic Methods to Prepare Plasmonic Transition-Metal Nitride Nanoparticles.
    Karaballi RA; Monfared YE; Dasog M
    Chemistry; 2020 Jul; 26(39):8499-8505. PubMed ID: 32068296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Infrared Plasmonics with Conductive Ternary Nitrides.
    Metaxa C; Kassavetis S; Pierson JF; Gall D; Patsalas P
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10825-10834. PubMed ID: 28266835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C.
    Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B
    Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tailoring the Thickness-Dependent Optical Properties of Conducting Nitrides and Oxides for Epsilon-Near-Zero-Enhanced Photonic Applications.
    Saha S; Ozlu MG; Chowdhury SN; Diroll BT; Schaller RD; Kildishev A; Boltasseva A; Shalaev VM
    Adv Mater; 2023 Aug; 35(34):e2109546. PubMed ID: 35917390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.
    Li W; Guler U; Kinsey N; Naik GV; Boltasseva A; Guan J; Shalaev VM; Kildishev AV
    Adv Mater; 2014 Dec; 26(47):7959-65. PubMed ID: 25327161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances.
    Farsinezhad S; Shanavas T; Mahdi N; Askar AM; Kar P; Sharma H; Shankar K
    Nanotechnology; 2018 Apr; 29(15):154006. PubMed ID: 29406316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.